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Abstract Detached-eddy simulation (DES) is well understood in thin boundary layers, with the turbulence
model in its Reynolds-averaged Navier–Stokes (RANS) mode and flattened grid cells, and in regions of mas-
sive separation, with the turbulence model in its large-eddy simulation (LES) mode and grid cells close to
isotropic. However its initial formulation, denoted DES97 from here on, can exhibit an incorrect behavior in
thick boundary layers and shallow separation regions. This behavior begins when the grid spacing parallel
to the wall �‖ becomes less than the boundary-layer thickness δ, either through grid refinement or bound-
ary-layer thickening. The grid spacing is then fine enough for the DES length scale to follow the LES branch
(and therefore lower the eddy viscosity below the RANS level), but resolved Reynolds stresses deriving from
velocity fluctuations (“LES content”) have not replaced the modeled Reynolds stresses. LES content may be
lacking because the resolution is not fine enough to fully support it, and/or because of delays in its generation
by instabilities. The depleted stresses reduce the skin friction, which can lead to premature separation.

For some research studies in small domains, �‖ is made much smaller than δ, and LES content is generated
intentionally. However for natural DES applications in useful domains, it is preferable to over-ride the DES
limiter and maintain RANS behavior in boundary layers, independent of �‖ relative to δ. For this purpose, a
new version of the technique – referred to as DDES, for Delayed DES – is presented which is based on a sim-
ple modification to DES97, similar to one proposed by Menter and Kuntz for the shear–stress transport (SST)
model, but applicable to other models. Tests in boundary layers, on a single and a multi-element airfoil, a cylin-
der, and a backward-facing step demonstrate that RANS function is indeed maintained in thick boundary layers,
without preventing LES function after massive separation. The new formulation better fulfills the intent of DES.
Two other issues are discussed: the use of DES as a wall model in LES of attached flows, in which the known
log-layer mismatch is not resolved by DDES; and a correction that is helpful at low cell Reynolds numbers.
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Fig. 1 Grids in a boundary layer. Top Type I, natural DES; left Type II, ambiguous spacing; right Type III, LES. Dotted lines
mean velocity. δ is the boundary-layer thickness. Assume �z ≈ �x ≈ �‖

1 Introduction

Detached-eddy simulation (DES) [1–4] and similar hybrid Reynolds-averaged Navier-Stokes–large-eddy sim-
ulation (RANS–LES) approaches are considered promising in high-Reynolds number separated flows by a
sizeable community. The use of these techniques is widening, and there have been a wide range of generally
successful applications. Predictably, there are also now visible and repeatable imperfections in these studies
and it is opportune to examine whether these are structural, or can be traced to inappropriate user actions.
Structural issues may be caused by the realities of turbulence physics and therefore permanent (unless DNS
is possible), or may be remediable by improvements in the strategy, as is attempted here. Inappropriate user
decisions can be slowly limited by user education, primarily via adequate publications and users’ manuals [5].
They can be of the type of using much too little computing effort, poor resolution balance between various
directions and time, or of attempting a case that is out of reach for fundamental reasons. As an example of
the first type, a recurrent mis-conception has been that DES should be applied with a somewhat coarser grid
than LES in massive-separation regions and other free shear flows. There is no reason for this, and it is not
implied in the core DES papers. DES is not simply “a coarser-grid version of LES.” DES differs from LES
only in boundary layers, with the model in RANS mode, and then the difference in the required resolutions
is very wide, as will be shown shortly. Unfortunately, this unexpected idea has led to several inappropriate
comparisons between LES and DES [6,7].

Detached-eddy simulation(DES) as originally proposed is designed to treat the entire boundary layer using
a RANS model and to apply an LES treatment to separated regions. This constitutes the “natural” use of the
method and another objective here is to classify the imperfections mentioned above between those which affect
DES in its intended, natural, mode of operation, and those which appear only in derivative uses of the DES
equations or in extensions of the initial “vision.” The latter are deferred to Sect.4. For natural DES, the issues
can be loosely attributed to the existence of a “grey area” between the RANS and LES regions, announced
from the outset in 1997 [1], but left for future thinking. We now have 8 years of experience and critiques from
numerous groups. The new version of DES – DDES – addresses precisely these natural applications.

To motivate DDES, Fig. 1 displays three grid densities in a boundary layer. For ease in explanation, recall
the basic formulas of DES when based on the Spalart–Allmaras (S–A, [8]) model for the length scale d̃ that
enters the turbulence model and controls the eddy viscosity: d̃ ≡ min(d, CDES�), where d is the wall distance,
CDES is of order 1, and � ≡ max(�x,�y,�z) is the chosen measure of grid spacing (the preference between
this measure and others such as (�x�y�z)1/3 is a separate issue, present in any LES [9]).

In a Type I grid, typical of RANS and of DES with a thin boundary layer, the wall-parallel spacings �x
and �z set � via the max formula and exceed δ, so that the DES length scale is on the “RANS branch” (i.e.,
d̃ = d) throughout the boundary layer. The model functions as intended, since DES was created precisely to
by-pass LES in large areas of thin boundary layer.
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The other extreme is the Type III, LES grid, with all spacings much smaller than δ (� ≈ δ/20 makes a
plausible starting value [1], but � ≈ δ/10 gives acceptable results). The model functions as a sub-grid scale
(SGS) model (i.e., d̃ = CDES�) over the bulk of the boundary layer, and as a RANS-like wall model very
near the wall (d̃ = d), with a grey layer in-between. This regime is a type of wall-modeled LES (WMLES).
LES started with wall modeling in the 1970s, then moved away from true wall modeling when computing
power allowed the resolution of the near-wall streaks, and is now tentatively returning to wall modeling as the
demand for high Reynolds numbers mounts [10]. This has proven very challenging, and a number of rather
complex solutions have been proposed in the literature. Using a Type-III grid with adequate initial or inflow
LES content represents a derivative use of the DES formulas, as discussed by [11] and here in Sect. 4.1.
Although quantitatively not perfect, this approach has merits including simplicity and stability, and responds
well to Reynolds-number and grid-density variations.

The “ambiguous” grid of Type II unfortunately activates the DES limiter (d̃ = CDES�) roughly in the
upper two-thirds of the boundary layer, but is patently not fine enough to support resolved velocity fluctua-
tions internal to the boundary layer, i.e., LES content. The DES limiter then reduces the eddy viscosity, and
therefore the modeled Reynolds stress, without any sizeable resolved stress to restore the balance [1]. This
will be referred to as modeled-stress depletion (MSD). It occurs if the grid is gradually refined starting from
Type I, typically when a user is justifiably seeking grid convergence, or when geometry features demand a fine
wall-parallel grid. It also occurs when a boundary layer thickens and nears separation. Thus, over an airfoil,
the same grid may be of Type I at one angle of attack, and of Type II at another angle.

Modeled stress depletion(MSD) was predicted from the origin of the method [1], though anticipated only
with “excessive” grid refinement and therefore not perceived as a major issue. The initial demonstrations
of the technique were over applications such as thin airfoils, which are not sensitive to the grey area [2].
A subsequent detailed study on the circular cylinder was also free of grid problems even with grid refinement,
because that flow has neither geometrical incentives for fine wall-parallel grid spacing (low �‖), nor thick
boundary layers (high δ) [3]. These factors retarded the recognition of the ambiguous-grid issue. It was then
encountered in studies of Caruelle [12] and Deck [13], and strongly emphasized by Menter and Kuntz [14]
who showed how severe cases of MSD lead to “grid-induced separation,” although with 2D examples which
were somewhat artificial. Therefore it was important to determine whether affordable 3D grids can lower �‖
in both directions sufficiently to result in MSD. This has proven to be the case, particularly in boundary layers
gradually approaching separation, when δ can reach 10% of the airfoil chord [7] (see Sect.3.4). This deficiency
needs to be addressed if DES is to be reliable in its natural mode with a variety of grid spacings, adapted to
geometry or shock waves, and boundary-layer thicknesses.

The issue of MSD faces any hybrid RANS–LES method, such as limited numerical scales (LNS) [15], that
aims at a function akin to natural DES and introduces the grid spacing into the turbulence model in order to
achieve an LES treatment. In contrast, two recently proposed methods, scale-adaptive simulation (SAS) and
turbulence-resolving RANS (TRRANS), do not use the grid spacing [16,17]. These methods are based on
pure RANS models, but exhibit some LES properties: both achieve LES behavior in simulations of homoge-
neous turbulence. However, neither approach has been able to sustain LES content in a channel, and TRRANS
fails to sustain unsteadiness over a backward-facing step, normally an excellent candidate for hybrid methods
(Sect.3.5). Thus, the control between RANS and LES function is not fully understood, and the role played by
differencing errors may be powerful. On the other hand, both methods are very young, and this understanding
may improve soon.

An initial solution to MSD was proposed, and is to make the DES “zonal:” the CDES limiter is disabled in
selected regions, where an attached boundary layer is expected [18]. This “manual reversion” is adequate in
simple geometries, but defining such regions in realistic 3D multi-body cases would be lengthy and error-prone,
so that this solution is not sufficient in general, and a case-independent formulation change is much preferred.
This has prompted non-zonal attempts, which have been only partly successful and thus should be superseded
by DDES, assuming its validation continues without major setbacks.

One such proposal is to use the aspect ratio of the grid cells (cf. Fig. 1). An aspect ratio much larger than
unity signals a boundary layer, and the length scale d̃ can be biased upwards, so as to favor RANS mode. This
was exercised by Dr. J. Forsythe in collaboration with the authors, but does not appear to be a robust solution,
at least in the unstructured grids that were used. The bias delays the switch to the LES branch, but the aspect
ratios are not usually large enough to give a clear enough “signal,” leading to manual adjustments as different
grids are used. In addition, many unstructured grids have abrupt transitions from high-aspect-ratio hexahedral
cells near walls to low-aspect ratio tetrahedral cells away from walls, which would cause abrupt switching
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between modes (� is less noisy). Conversely, structured grids tend to have regions with unnecessarily fine and
high-aspect ratio cells outside boundary layers, causing further damage to this concept.

A similar modification was used by Forsythe et al. [19], who found it more satisfactory, although the
same objections can be made (tendency to re-adjustments, and sensitivity to jumps in cell types). The idea is
to replace the DES97 length scale min(d, CDES�) with a function d̃(d, CDES�) that has the same limiting
behaviors when d � CDES� and when d � CDES�, but keeps following d when it is only somewhat larger
than CDES� (DDES achieves this behavior via different means). Specifically, these investigators implemented
d̃ ≡ min(CDES max(n2CDES�2/d,�), d), with n = 3. This extends RANS behavior to a thicker layer. How-
ever, the use of the ratio d/(CDES�) to identify boundary layers is not much more robust than the use of
cell aspect ratio. In general, the user cannot be expected to anticipate the thickness of the boundary layer at
grid-generation time, especially with incipient separation. Grid adaptation solves this problem, but present
automatic grid-adaptation algorithms produce strong local variations of cell size and aspect ratio.

A solution within the DES equations was proposed by Menter and Kuntz [14] who use the F2 or F1
functions of the SST two-equation RANS model to identify the boundary layer, and prevent a switch to LES.
The DDES solution proposed here is a derivative of their proposal, but is not limited to the SST model; it is
general, as long as the model involves an eddy viscosity. It is presented in Sect. 2, and exercised in Sect. 3.
Then, Sect. 4 discusses wall-modeled LES and introduces a low-Reynolds number correction which, roughly,
extends DES to flows at laboratory Reynolds numbers. Finally, Sect. 5 is devoted to the outlook for DDES.

2 DDES formulation

2.1 Presentation

As mentioned above, Menter and Kuntz [14] use the blending functions F2 or F1 of the SST model to “shield”
the boundary layer, by which they implied “preserve RANS mode,” or “delay LES function.” Except for a
low-Reynolds number limiter, the argument of these functions is

√
k/(ωy), which is the ratio between the

internal length scale
√

k/ω of the k-ω turbulence model and the distance to the wall (d , or y). The F functions
equal 1 in the boundary layer, and fall to 0 rapidly at the edge. One-equation models such as S-A do not have
an internal length scale, but involve the parameter r which is also the ratio (squared) of a model length scale
to the wall distance (the length scale is not internal in that it involves the mean shear rate). For DDES, the
parameter r is slightly modified relative to the S-A definition, in order to apply to any eddy-viscosity model,
and be slightly more robust in irrotational regions:

rd ≡ νt + ν
√

Ui, jUi, jκ2d2
, (2.1)

where νt is the kinematic eddy viscosity, ν the molecular viscosity, Ui, j the velocity gradients, κ the Kármán
constant, and d the distance to the wall. Similar to r in the S-A model, this parameter equals 1 in a logarithmic
layer, and falls to 0 gradually towards the edge of the boundary layer. The addition of ν in the numerator
corrects the very near-wall behavior by ensuring that rd remains away from 0. In the S-A model, ν̃ can be used
instead of νt + ν. The subscript “d” represents “delayed.”

The quantity rd is used in the function:

fd ≡ 1 − tanh([8rd]3), (2.2)

which is designed to be 1 in the LES region, where rd � 1, and 0 elsewhere (and to be insensitive to rd
exceeding 1 very near the wall). It is similar to 1 − F2, and rather steep near rd = 0.1.

The values 8 and 3 for the constants in (2.2) are based on intuitive shape requirements for fd, and on tests
of DDES in the flat-plate boundary layer (Sect. 3.2). These values for the coefficients ensure that the solution
is essentially identical to the RANS solution, even if � is much less than δ. A value larger than 8 would delay
LES in even larger regions, which would be safer in the sense of avoiding MSD, but is undesirable overall. It
is conceivable that models very different from S-A would make rd approach 0 at d = δ differently enough to
require a modest adjustment of fd.

The application of the above procedures to S-A-based DES, which is used from here on, proceeds by
re-defining the DES length scale d̃:
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d̃ ≡ d − fd max(0, d − CDES�). (2.3)

Setting fd to 0 yields RANS (d̃ = d), while setting it to 1 gives DES97 (d̃ = min(d, CDES�)). Several
applications shown below will display the fd distribution.

For DES based on most of the possible RANS models, DDES will consist in multiplying by fd the term
that constitutes the difference between RANS and DES, just as in (2.3).

2.2 Interpretation

This new formula (2.3) for d̃ does not represent a minor adjustment within DES; there is a qualitative change.
Without it, d̃ depends only on the grid; with it, the length scale now also depends on the eddy-viscosity field.
It is time-dependent. The issue is not with coding the equations. The crucial effect is that RANS function is
self-perpetuating, i.e., the model using (2.3) for d̃ can “refuse” LES mode if the function fd indicates that the
point is well inside a boundary layer, as judged from the value of rd. However, if massive separation occurs, fd
does rise from 0, and LES mode takes over; verifying this is an essential task in this paper. In fact, the switch
from RANS to LES takes place more abruptly following separation than in DES97, which is desirable; the
grey area between RANS and LES is narrower. This does not in itself create LES content, but it accelerates
its growth following natural instabilities, closer to the region where modeled Reynolds stresses are still at full
strength.

Note that the provision of a protection against ambiguous grids does not remove the burden on DES
users to generate adequate grids [5], which is far from trivial in complex flows, and to conduct meaningful
grid refinements, except in repetitive series of cases (for instance, simulations of slightly different aircraft or
vehicles, with the same topology and flow features). Grid quality must be established in any publication, and
unfortunately it is easy to abuse the robustness of any approach.

A full solution to the MSD issue would also address free shear layers, which the F2 and fd functions do not
(Sect. 3.6). One reason to leave these for further work and publish the present DDES formulation is that DES
grids are normally fairly isotropic outside boundary layers [5], and therefore not of Type II. Consequently, the
grid is either fine enough to sustain an LES of the shear layer, or so coarse that it smears it, and an accurate
solution is simply not to be expected irrespective of the eddy viscosity. In addition, shear layers sustain insta-
bilities even on wave-lengths much larger than their thickness, unlike boundary layers; this allows some LES
content to be generated even with residual RANS-like eddy viscosity, albeit slowly since the growth rate is the
inverse of the wave-length. A substantial challenge is that any solution to MSD for free shear layers should
provide that the entire layer switches from one mode to the other at once, which is difficult to obtain using
local quantities.

3 DDES tests

3.1 Overview

The intent is to exercise DDES widely enough to be able to recommend it with confidence over DES97. It is
easy to demonstrate an improvement in a simple case “designed” to suffer MSD, but more difficult to anticipate
cases in which the new version would in fact be less capable than the old. If a class of such cases exists, the
danger is that the two versions will co-exist in the community, which will lead to waste of effort and impede
comparisons. Another objective is to exercise DDES in separate codes, which would help detect any special
difficulty, or ambiguity in the formulation. Two codes are used here; DDES was successfully implanted in a
third, but its results are not used. Next the two codes, which do not share any modules, are briefly described.

The NTS CFD code used in Sects. 3.2–3.5 provides the capability of steady RANS computations and
time-accurate simulations of turbulent flows in the framework of different approaches (URANS, DES, SAS,
TRRANS, LES, and DNS). The code accepts structured multi-block overset grids and employs finite-volume
approximations based on the implicit flux-difference splitting scheme of Rogers and Kwak for incompress-
ible flows and Roe’s scheme for compressible flows. In the steady and unsteady RANS computations, the
inviscid fluxes are approximated with upwind-biased third- or fifth-order accurate differences and the viscous
fluxes with centered second-order differences. In DES97 and DDES, a hybrid (fifth-order upwind/fourth-order
centered) approximation is used with a blending function dependent on the solution [20]. Time integration
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Fig. 2 Distributions in flat-plate boundary layer. a Reynolds-averaged Navier–Stokes (RANS). b Detached-eddy simulation
97(DES97). c DDES. Unit Reynolds number 106, Rx = 1.2 × 107 (fine grid starting at Rx = 107), Rθ ≈ 1.8 × 104; �‖ ≈ 0.1δ.
—, U/U∞ (a, b, c); · · ·, 0.002 µt/µ (a, b, c); - - -, r or rd (a, b, c); - - — - -, Dest/(4cb1τw) (a); - — -, fd (c)

is performed with the second-order accurate three-layer backward scheme. At every time step the resulting
finite-difference equations are solved with the use of Gauss–Seidel relaxations by planes and sub-iterations in
“pseudo-time.”

The code FLU3M used in Sect. 3.6 also accepts multi-block structured grids, but is second-order accurate
for all terms, using a finite-volume approach and a modified AUSM+(P) upwind scheme [18]. Time integration
uses a second-order Gear formulation, with an LU factorization of the implicit system.

3.2 Boundary layers

Figure 2 compares RANS, DES97 and DDES in a boundary layer with grid spacing about 1/10th of the bound-
ary-layer thickness; this is a strong case, more severe than in Fig. 1, and the ambiguous-grid region penetrates
deep into the boundary layer. Indeed, with DES97 (Fig. 2b) the peak eddy viscosity is reduced by about 75%,
and the skin friction by 19% from the RANS prediction, an echo of a similar test in the initial DES paper [1].
In contrast, DDES preserves the eddy viscosity almost fully. Note that fd can safely rise from 0 in the upper
half of the boundary layer, because the S-A destruction term is already negligible in that region (Fig. 2a). The
small deficit of eddy viscosity at the edge is very acceptable. It could be eliminated by slanting the fd function
towards more “shielding,” but at some point it would suppress LES behavior where such behavior is best.
These considerations guided preliminary tests, not shown here, that were used to choose the coefficients for
fd. Another boundary-layer test with an even finer grid was similarly satisfactory.

3.3 Circular cylinder

The case listed as LS2 by Travin et al. [3] was run again with the expectation that DDES would agree with
DES97, which was quite successful. It has laminar separation (treated with the Trip-Less mode of the S-A
model), Reynolds number 105, and a fairly coarse grid with the spanwise grid spacing of 0.07 diameters setting
� in the near-wake. Flow visualizations, not shown, reveal that DDES has little impact on the eddy viscosity
in the separated shear layer, and on the evolution of the layer. Presumably, the destruction term is already weak
in this flow, due to the eddy viscosity growing only well downstream of laminar separation. Figure 3 confirms
that the quantitative effect on the pressure is insignificant. The structure of DDES strongly suggests that the
fine grid would return the same behavior.

3.4 Single airfoil

This airfoil was studied experimentally by Gleyzes and Capbern [22], at Reynolds number 2.1 × 106 and
angle of attack 13.3◦. With its sustained adverse pressure gradient, it is a prime example of a boundary layer
thickening sufficiently to damage the RANS mode of DES97 even on a grid of medium density, as δ reaches
around 7% of the chord, or 14 times �‖ (Fig. 4a). The separation is very mild, and the simulation is run without
LES-content generation. Therefore, the desirable behavior is for RANS mode to extend to the trailing edge.
This is indeed obtained with DDES, as shown by Fig. 4. The fd function is close to 0 over almost the entire
region marked by eddy viscosity (Fig. 4b,c). Its behavior is unremarkable, with a steep rise from 0 to 1, but the
small region in which it imposes RANS mode is the key region in this flow. Figure 5 confirms that Grid-Induced
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Fig. 4 DDES over A airfoil. a Grid (�z < �x ≈ 0.005, 412 points around airfoil). b fd function. c eddy viscosity
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Fig. 5 Skin-friction coefficient over a airfoil.—, RANS; - - -, DES97; - — -, DDES; ◦, experiment

Separation at x/c = 0.77 has been corrected by the fd term. The experiment is shown for reference, but the
emphasis is on preventing hidden grid-induced alterations of the solution, starting from RANS mode. Perfect
agreement is not to be expected, for reasons which include the imperfections of the RANS model, and 2D and
3D wall effects. In addition, the upper-surface boundary layer in these simulations was tripped slightly ahead
of the laminar separation near x/c = 0.08, which helps convergence but somewhat damages the C f farther
downstream.

3.5 Backward-facing step (BFS)

This is a key case, in that the desired behavior from DES is to maintain RANS mode in both attached boundary
layers (i.e., the entire opposite wall, and the step side for x < 0), while switching to LES mode as rapidly as
possible after separation from the corner, without input perturbations. DES97, with a sensible grid refinement
near the step, suffers from ambiguous behavior. This is benign for the boundary layer approaching the step:
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Fig. 7 Skin-friction coefficient in DES over backward-facing step. a Step side. b Opposite side. ◦, experiment [23]; —, RANS;
- - -, DES97; - — -, DDES

the skin friction becomes grid-sensitive, but separation of course takes place at the step. The opposite-wall
boundary layer is more troublesome, because it needs to resist separation in the adverse pressure gradient, and
to produce an accurate thickness evolution. Figure 6 shows details of the DDES solution, and confirms that
both qualitative objectives are reached. As expected, the variations of fd are rather steep, but not enough to
cause numerical difficulties. The lower levels of eddy viscosity in the LES region than in the RANS regions
are vividly seen. Figure 7 shows skin friction, for RANS, DES97, and DDES. Its behavior is convincing in
that the step-side skin friction remains accurate in DDES, while the grid-induced drop by up to 60% on the
opposite side is eliminated. The known accuracy advantage of DES over RANS (at least, over RANS using
the S-A model) after separation is preserved.

Figure 8 expands the comparison between DES97 and DDES, showing that LES content is essentially as
fine with either approach, both in the free shear layer and in the reattaching wall layer. In other words, they
use the grid equally well, which is not obvious based on the formulation since the DDES equations tend to
inflate the eddy viscosity, relative to DES97. This flow demonstrates the ability of DDES to continue LES
behavior in a boundary layer, and this is also the case in a channel. The BFS re-developing region is an exam-
ple of co-existence of the RANS and LES modes, as long as the two boundary layers remain distinct. Much
farther downstream, the two boundary layers will eventually make contact, and the entire channel will adopt
a single mode. This was emulated in a temporally-evolving channel (which is much less costly than a very
long spatially-developing one), by creating a RANS initial field near one wall and an LES initial field near
the other wall. The boundary layers then gradually thickened, each in its own mode. The outcome was that
LES mode “invaded” RANS mode, propagating LES content and reducing eddy viscosity. This is satisfactory,
considering that the grid was of Type III, so that the computing cost was that of an LES. However, the other
possible outcome, namely an “invasion” by RANS, would not have been catastrophic since the S-A RANS
model is quite accurate in the channel; it would simply have led to a waste of computing effort.
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Fig. 8 Swirl contours in backward-facing step flow. Left DES97; right, DDES

Fig. 9 Flow over a multi-element airfoil. Contours of spanwise velocity

3.6 Multi-element airfoil

This is the most complex geometry, and a good outcome would be a positive indicator for industrial applica-
tions of DDES. This flow exhibits large low speed areas, strong pressure gradients, confluence of boundary
layers and wakes, and unsteadiness and three-dimensionality on fairly large scales. Each of these can create a
challenge for a hybrid RANS/LES calculation. The needs of the different regions place conflicting demands
on the grid, especially since it is structured. The chord Reynolds number is 1.8×106; the x–y grid has 250,000
points, and the spanwise grid has 31 points with �z/c = 0.002. This makes the spanwise period appear small
at 6% of c, but at this angle of attack, it should be compared with the chords of the slat and flap, rather than
that of the airfoil. The time step is 2.2 × 10−5c/U∞. This resolution far exceeds what would be feasible for
an entire wing today (however, somewhat coarser resolutions, soon to be feasible for such cases, would also
experience MSD).

In Fig. 9, three regions with reversed flow, namely the slat cove, the flap cove, and the wake over the flap,
sustain LES content even with the fd correction, again indicating that it is not too strong. The slat wake inherits
some LES content from the cove, but it is highly elongated by the acceleration, and the wake is much too
thin for LES mode to flourish in the present grid. Such a reversion from LES to RANS is tolerable when the
shear layer which suffers it is not dominant, but this illustrates the robustness that will be needed from hybrid
methods in real-life applications, and the potential for mode changes in either direction between RANS and
LES in each region of such complex flows, as the grid is refined. In fact, this slat wake combined with the
main-element wake can become dominant at other angles of attack, when off-surface reversal begins over the
flap, and drastically alters its lift.

Figure 10 presents velocity and eddy-viscosity profiles of the boundary layer in the vicinity of the main-
element trailing edge. At this station, the boundary layer has thickened, and the grey area penetrates deeply into
it. Note how the eddy viscosity of DES97 is dramatically reduced compared to RANS, as in Fig. 2. In contrast,
DDES preserves the eddy viscosity in the wall layer. The outer part of the boundary-layer profile is influenced
by the merging with the slat wake, which is treated neither in full RANS mode nor in LES mode (recall Sect.
2.2). Note how the slat wake near d/c = 0.045 is narrower with DDES than with RANS, presumably a case
of MSD, although unsteady wavering would result in a wider wake in the time average. This is confirmed by
Fig. 11a, which presents the evolution of 1 − fd near the wall, and other quantities relevant to DDES. One can
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Fig. 10 Distributions in boundary layer over the main element at x/c = 0.95: a RANS. b DES97. c DDES Continuous line,
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notice that the modified length scale d̃ follows the RANS branch farther away from the wall than it would in
DES97, being equal to the wall distance d up to d/c ≈ 0.015, which is more than half of the boundary layer.
At its peak, it exceeds CDES� by an order of magnitude. A second peak at d/c ≈ 0.03 is due to the shear rate
crossing zero and entering rd in (2.1), but is not noticeably disturbing the eddy viscosity. Figure 11b uses the
Reynolds shear stress, as alternative to the eddy viscosity, to reveal the deep differences between DES97 and
DDES.

In summary, the cases presented here suggest that the DDES concept is viable, and that the fd function
chosen gives a good enough compromise. Tests conducted on a prolate spheroid are not presented, because
present grids are far from fine enough to resolve eddies in the shear layers, so that the switch to LES could
not be demonstrated; in addition the grid-induced MSD, which is undesirable, overlaps with the weakening of
turbulence by rotation, which is physical and provided by the better RANS models.

4 Some other issues in turbulence simulations

4.1 Wall-modeled LES

The basic DES position [1] was that all turbulent-boundary-layer physics are treated by RANS, so that the
accuracy cannot surpass that of the RANS model, including for the prediction of separation which is so crucial.
RANS models will improve, but the recent pace has been very slow. However, LES offers the possibility of
breaking through this “accuracy barrier” of RANS, with fine enough grid and time step, and WMLES offers
the possibility of doing so at practical Reynolds numbers. This long-term goal supplied the motivation for the
application of the raw DES equations to turbulent channel flow by Nikitin et al. [11]. The backward-facing step
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simulations presented above are an example of a DES evolving spontaneously from a RANS into the LES of
an attached boundary layer in the downstream region. As outlined in that work [11], the DES equations, with
LES grids in the boundary layer (Type III in Fig. 1), provide a wall model for LES and enable LES predictions
at unlimited values for the wall-parallel grid spacing in wall units, �+

‖ . The model is very simple, is robust,
and needs no averaging to remain stable, in contrast to some elaborate SGS models. The cost advantage of
WMLES over wall-resolved LES, also called Quasi-DNS (in which limits of the order of �+

z ≤ 20 apply [1])
is major at application Reynolds numbers, and WMLES far better meets the spirit of LES [4].

Nikitin et al’s [11] exercise showed that WMLES is possible with the DES equations, in the sense that
LES content is sustained in the center of the channel, and that wall modeling is achieved, since values of
�+

‖ such as 8,000 are used with results as accurate as they are at lower Reynolds numbers. At high enough
Reynolds number, the mean velocity profiles have a “modeled log layer” near the wall and a “resolved log
layer” near the channel center. These layers have about the same Kármán constant κ , for different reasons.
The modeled layer returns the Kármán constant contained in the RANS model; the resolved layer returns an
accurate value once the grid is fine enough, because LES is performing. The issue is that their intercepts C
(in U+ = log(y+)/κ + C) do not quite match; the layers are not lined up [11]. This issue is referred to as
“log-layer mismatch.” The presence of this “super-buffer layer” between the RANS and LES regions was
expected, and only good fortune could have made the two layers line up perfectly. Recall that no adjustments
of any kind were made to the DES formulas, and that the wall-parallel grid spacings �x and �z were identical
(in other words, knowledge of the skin-friction direction was not used, the way it has been in essentially all
previous LES studies). This study was intentionally constrained. The consequence of log-layer mismatch is
an under-estimation of the skin-friction coefficient by about 15%, which is not acceptable. This trend may be
detected for x/H ≥ 15 in Fig. 7, confirming that log-layer mismatch is insensitive to the DDES modification.
In fact, this mismatch was not a target of the present work; once fd = 1, DDES and DES97 behave the same.

Subsequent studies revealed that straightforward WMLES by the DES model makes the near-wall fluctu-
ations too weak and elongated [10]. A tentative solution is to stimulate this region artificially [24]. This can
eliminate the mismatch, at the cost of new adjustable parameters and, more importantly, some coding com-
plexity and some real difficulties controlling this intervention in practical applications. However, recent work
has reduced these concerns thanks to a new control strategy [25]. Other solutions are being studied, including
non-isotropic eddy viscosities and strong local adjustments of the length scale d̃, but are not sufficiently evolved
to be discussed here.

The study of Nikitin et al. [11]appears to have triggered an unfortunate amalgam between DES and WMLES.
As an example, Caruelle and Ducros [26] make the nature of their WMLES exercise clear in their text, but
not in their title and abstract where only DES is mentioned, so that following contributors may not grasp the
essentials of DES. Many WMLES methods use wall models derived from RANS models, which is legitimate.
However, the complete method often does not have the ability to treat an entire boundary layer in RANS mode,
an ability which is essential to DES. The same distinction exists between the mixing-length model, which
extends only into the log layer, and the Baldwin–Lomax model, which extends to the boundary-layer edge and
beyond. Methods which use RANS technology only for the purpose of wall modeling in LES have their place,
but they are limited, and should not be called “DES.”

As far as application of DDES to WMLES is concerned, it has peculiarities. First, the new inter-depen-
dence between the length scale and eddy viscosity field discussed in Sect. 2.2 raises the possibility of multiple
solutions in grids suited to WMLES (Type III). This was seen for the two sides of the BFS case and is straight-
forward to exhibit in a temporal channel flow; even with a grid capable of WMLES, if the initial condition is
in the vicinity of a RANS velocity and turbulence field, the solution will continue in RANS mode, i.e., without
three-dimensionality or turbulent fluctuations. However, a WMLES can also be obtained, by providing an
appropriate initial condition with LES content and low enough eddy viscosity. Multiple solutions are usually
not an attractive feature in any method, but here for a mature solution the switch is between two radically
different modes, which are obvious in any flow visualization. No LES or DES should be conducted without
detailed visualization, a fact which curiously is lost on some users. In tests performed to date, there is no
example of a flow alternating between the two modes, or finding an intermediate state at maturity; however,
the experience base is still narrow. A DES97 of the channel on a grid of Type II or III with no initial LES
content at all would find a pathological state with zero resolved stresses, and weak modeled stresses, which
could be very inaccurate and grid-dependent. DDES avoids this pitfall.

Until now, the use of DES as a wall model has taken place only in a channel, removed from natural DES.
A long-term goal is to combine the two in the same simulation, such as a flow with both extensive thin bound-
ary layers and a region of thick boundary layer, for instance with incipient separation or recovering after
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reattachment. The BFS case is an example. The key to DES preserving a cost advantage over full-domain LES
[1] will be to activate WMLES only in turbulent–boundary-layer regions that satisfy two conditions. First, they
are challenging due to pressure gradients, active flow control, or other influences, so that the effort is justified.
Another motivation exists when a particular region is of special interest for its unsteadiness, causing vibrations
or noise. Second, these regions are thick enough compared with their extent that the cost of LES is bearable.
The cost predictor used in [1] called Ncubes, the number of cubes of size δ needed to fill the turbulent boundary
layer, remains valid; formally, Ncubes is the integral over the body surface of 1/δ2. The entire boundary layer
on a wing may have Ncubes of the order of 107, because of the thin boundary layer near the leading edge. In
contrast, the thick region approaching separation, if its thickness is made to start at 1% of chord, leads to Ncubes
somewhat over 104, under similar assumptions. This is vastly more favorable.

This practice raises a new difficulty, which is not addressed in this paper either. It is the generation of
LES content in a boundary layer, with a tolerable recovery region until healthy boundary-layer turbulence is
established. The name given by Batten et al. [27] will be used: “Large-Eddy Stimulation (LEST)”. The need
is not specific to DES, or even to LES; it exists in spatial DNS of a boundary layer, unless transition takes
place within the domain. It has long been known that simple random numbers fail to yield a rapid recovery as
measured, for instance, by the skin friction. Solutions that construct “turbulence” with combinations of many
Fourier modes in time and in the spanwise direction do work better. A successful approach is the rescaling and
recycling of unsteady data from a plane somewhat downstream of the inflow plane, proposed by Lund et al.
[28]. Simpler versions of this approach also work well [29].

Large-eddy stimulation can take two forms. In most studies, it has been performed at an inflow boundary;
the entire domain is in LES mode. However, the capability of generating such eddies inside an LES or DES
field will be very valuable, as recognized by Batten et al.[27] for LNS . The simulation of a single boundary
layer will be in RANS mode up to some line, selected by the user within the attached region, and in LES mode
beyond that line. Their position is that the best method will seamlessly stimulate the LES content needed, as
the modeled Reynolds stress is vanishing. It is recognized that this will benefit from a sudden grid refinement
from Type I to Type III, and will require extra empirical terms in a band of the boundary layer (in contrast
with the spontaneous switch at the BFS). However, these terms will be active only over a small volume, in a
region that is unchallenging in terms of boundary-layer behavior, and the turbulent boundary layer will lose
memory of the details before entering the challenging region, such as an adverse pressure gradient, a step, or
a turbulence-control device.

4.2 Low-Reynolds number correction

The low-Reynolds number terms in the S-A RANS model were designed to account for wall proximity, “mea-
sured” by the ratio of the eddy and molecular viscosities νt/ν (an expedient to avoid using the friction velocity).
Most RANS models have similar terms, also based on various turbulent Reynolds numbers. However, in the
LES mode of DES, the subgrid eddy viscosity (normalized by the molecular viscosity) decreases with grid
refinement and decrease of the flow Reynolds number. At some point, standard DES will mis-interpret the
situation as “wall proximity” and lower the eddy viscosity excessively, relative to the ambient velocity and
length scales, through the fv and ft functions of the S-A model. Although this deficiency shows up only at
relatively low Reynolds numbers and/or with very fine grids, it is still desirable to eliminate it, and to do so
without zonal instructions from the user. A correction has been developed for DES97 and tested on a few
generic cases, and is given first. DDES is then considered.

The correction to the DES97 formulation reads:

lDES = min(lR AN S, 	CDES�). (4.3.1)

For the S-A model, lDES ≡ d̃ and lRANS ≡ d . This differs from the original DES97 formulation by the
introduction of the factor 	 ≥ 1 (without the correction, 	 would equal 1), which can be interpreted as an
increased effective value for CDE S . It is a function of νt/ν, or equivalently of the parameter χ ≡ ν̃/ν of the
S-A model.

The derivation of the expression for 	(νt/ν) is based on the assumption that at “equilibrium” (i.e., when
convection and diffusion in the turbulence-transport equations of a RANS model are negligible) the modified
subgrid model driven by lDES = 	CDES� should reduce to a Smagorinski-like model, i.e., νt = (C�)2S
where C is constant.
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Based on this, the following relation for 	(νt/ν) in the S-A based DES97 can be derived:

	2 =
fw
f ∗
w

− cb1
cw1κ2 f ∗

w
[ ft2 + (1 − ft2) fv2]

fv1(1 − ft2)
. (4.3.2)

This function is shown in Fig. 12a. All the notations in the right-hand side of (4.3.2), except for the quantity
f ∗
w, are the same as in the S-A model [8]. Note that the “equilibrium” function fw in (4.3.2) can be shown to

satisfy the following nonlinear algebraic equation:

fw = φ (g[r( fw, χ)]) , r( fw, χ) = cb1(1 − ft2)

κ2cw1 fw − cb1 ft2
, φ(g) ≡ g

(
1 + c6

w3

g6 + c6
w3

)1/6

(4.3.3)

and therefore is a function of χ (or νt/ν) only. The quantity f ∗
w in (4.3.2) is the limit value of the function fw

defined by (4.3.3) at high subgrid viscosity, νt � ν, i.e., at high cell Reynolds number. Its value is f ∗
w = 0.424.

The solution of (4.3.3), shown in Fig. 12b, shows that the ratio fw/ f ∗
w is a weak function of νt/ν; for the

meaningful range of eddy viscosity, νt > ν/10, it is equal to 1 within 2%. This allows the replacement of
expression (4.3.2) for 	 by:

	2 = min

[

102,
1 − cb1

cw1κ2 f ∗
w

[ ft2 + (1 − ft2) fv2]

fv1 max(10−10, 1 − ft2)

]

. (4.3.4)

in which 	 and 1− ft2 are now limited from above and below to ensure reasonable behavior of 	 in the “DNS
limit” νt < ν/100. The correction is inactive (	 = 1) for a subgrid eddy viscosity higher than about 10ν,
and becomes quite strong for lower values. This modification of S-A DES97 has been successfully applied to
the homogeous-turbulence problem, to the cylinder flow, and to the NACA 0012 airfoil at 60◦ angle of attack
[30]. The eddy viscosity in a 643-grid LES of homogeneous isotropic turbulence is shown in Fig. 12c, and the
effect of 	 is large; note that the eddy viscosity is a few times the molecular viscosity.

The same methodology may be applied for designing corrections to any other DES versions based on RANS
models that include low-Reynolds number terms. For instance, for the Wilcox k-ω model [31]1, it results in
the following expression for 	:

	 = 	(Ret ) = β∗

Cµ

(
2α

α∗

)3/4

,

where Ret ≡ k/(ων) is the turbulent Reynolds number, and Cµ, α, α∗ and β∗ are the constants and “low-
Reynolds-number” functions of the model.

The above approach is of course applicable to DDES as well. However in this case the fd function is also
available to correct at low cell Reynolds numbers. For instance, in the S-A based DDES, the variable χ is
replaced with max(χ, 20 fd) before entering the functions fv1 and ft2.

1 The corresponding subgrid model can be obtained from the RANS model exactly the same way as it was done in [20] for
the SST model, i.e., by replacement of lR AN S with 	CDE S� in the dissipation term of the k−transport equation only (the CDE S
value defined by calibration on the decaying isotropic homogeneous turbulence problem for this model is 0.72).
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5 Outlook

The new version of DES proposed here was prompted by independent findings of users, was guided by work
of Menter and Kuntz [14] and is supported in this paper by a fair set of tests, in different codes. Although it
cannot be that the absolute best formulation was found, the present one for fd appears simple and permanent
enough to be recommended. It also fits the spirit of DES as introduced in 1997; the formulas changed and now
involve the solution in the definition of d̃, unlike before, but the intent has not changed. The MSD phenomenon
that is suppressed on ambiguous grids is definitely spurious, and loss of LES behavior after massive separation
has not been observed. Whereas with DES97, MSD is encountered with grid densities that are practical at least
in thick boundary layers, DDES would suffer MSD only in extreme grids. The code modification is not very
inconvenient. The increased possibility of multiple solutions is not a major issue, and would be problematic
only if DES were used as a “black box.”
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