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a b s t r a c t

Recent advances and challenges in the generation of reduced order aerodynamic models using
computational fluid dynamics are presented. The models reviewed are those that can be used for
aircraft stability and control analysis and include linear and nonlinear indicial response methods,
Volterra theory, radial basis functions, and a surrogate-based recurrence framework. The challenges
associated with identification of unknowns for each of the reduced order methods are addressed. A
range of test cases, from airfoils to full aircraft, have been used to evaluate and validate the reduced
order methods. The motions have different amplitudes and reduced frequencies and could start from
different flight conditions including those in the transonic speed range. Overall, these reduced order
models help to produce accurate predictions for a wide range of motions, but with the advantage that
model predictions require orders of magnitude less time to evaluate once the model is created.

Published by Elsevier Ltd.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
1.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
1.2. The need for reduced order unsteady aerodynamics modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
1.3. Current aerodynamic modeling efforts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

2. Review of unsteady aerodynamic prediction methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
2.1. Classical theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
2.2. Volterra theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
2.3. Indicial theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
2.4. Surrogate-based recurrence-framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
2.5. Radial basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

3. Review of system identification methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
3.1. System identification of CFD simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
3.2. Volterra kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
3.3. Indicial functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
3.4. Training maneuvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

4. Flow solver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5. Validation test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.1. NACA 0012 Airfoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5.2. SDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
5.3. SACCON UCAV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
5.4. X-31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6. Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.1. Airfoil aerodynamics modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.1.1. Models for M¼0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.1.2. Models for M¼0.764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/paerosci

Progress in Aerospace Sciences

http://dx.doi.org/10.1016/j.paerosci.2014.09.001
0376-0421/Published by Elsevier Ltd.

n Corresponding author.
E-mail addresses: Mehdi.Ghoreyshi@usafa.edu (M. Ghoreyshi), Adam.Jirasek@gmail.com (A. Jirásek), Russ.Cummings@usafa.edu (R.M. Cummings).

Progress in Aerospace Sciences 71 (2014) 167–217

www.sciencedirect.com/science/journal/03760421
www.elsevier.com/locate/paerosci
http://dx.doi.org/10.1016/j.paerosci.2014.09.001
http://dx.doi.org/10.1016/j.paerosci.2014.09.001
http://dx.doi.org/10.1016/j.paerosci.2014.09.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.paerosci.2014.09.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.paerosci.2014.09.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.paerosci.2014.09.001&domain=pdf
mailto:Mehdi.Ghoreyshi@usafa.edu
mailto:Adam.Jirasek@gmail.com
mailto:Russ.Cummings@usafa.edu
http://dx.doi.org/10.1016/j.paerosci.2014.09.001


6.2. SDM aerodynamics modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
6.3. SACCON aerodynamics modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
6.4. X-31 aerodynamics modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

1. Introduction

1.1. Overview

The understanding and prediction of unsteady nonlinear aero-
dynamics attach great importance to advance aircraft aeroelasti-
city and flight dynamics. Maneuvering flight at high angles of
attack, fast motion rates, and gusty wind conditions, as well as
sudden control surface deflections and flutter phenomenon, all are
examples of unsteady flight conditions [1]. The unsteady aero-
dynamic forces and moments in these conditions can have a
significant effect on aircraft aeroelastic and dynamic stability
characteristics [2]. In particular, flow hysteresis in a rapid maneu-
vering fighter can lead to pronounced time lags in the increase and
decline of aerodynamic loads with respect to the flow field
changes [3,4]. The main sources of aerodynamic nonlinearities
are shock wave motions and separated flows which can generate
limit cycle oscillations and have a significant impact on aircraft
performance and stability [5]. An aerodynamic model that can
accurately predict the nonlinear and unsteady airloads of a
maneuvering aircraft can improve the accuracy of the structural
analysis and flight control design. This translates into reduced
project risk and enhanced analysis of system performance prior to
first flight.

A wide range of mathematical models have been developed to
represent the unsteady aerodynamic loads for use in aircraft
stability and control (S&C) analysis, including classical linearized
models using rotary and unsteady aerodynamic derivatives (the _α
terms) [6]. The unsteady derivatives of static and weakly nonlinear
systems can be determined by a Taylor series expansion about
given equilibrium flight conditions. However, these derivatives are
not suitable for analysis of a high performance aircraft with highly
nonlinear and unsteady aerodynamics [7,8]. There are also only
limited experimental measurements available to determine the
effects of unsteady flow on the aerodynamic forces and moments
acting on an aircraft. This is mainly due to the complexity of
unsteady flow and the limitations of existing test facilities [8].
During the past decade, efforts have been made at formulating
techniques that predict continuous and discrete-time aerodynamic
responses using Computational Fluid Dynamics (CFD) [9,10]. These
recent advances have led to the generation of unsteady nonlinear
aerodynamic models for six-degree-of-freedom (6DoF) aircraft
maneuvers with moving control surfaces. This work reviews the
current state-of-the-art in unsteady aerodynamic modeling for use
in S&C and discusses current challenges for these modeling
approaches.

1.2. The need for reduced order unsteady aerodynamics modeling

With advances in computing techniques, one straightforward
way to predict flow-induced nonlinearities is to develop a full-
order model (often called a time-marching CFD solution) based on
time integration of the structural and aerodynamic equations
[11–13]. However, creating a full-order model for S&C is
a computationally expensive approach and is impractical from a
designer's point of view because it requires a large number of

computations for different values of motion frequency and ampli-
tude [14,15]. Also, this approach makes the solution of the aircraft
equations of motion an infinite-dimensional problem, where the
current states depend on the evolution of previous states at
infinitely many points in time [16]. It is therefore desirable to
use a relatively simple but accurate approximation for the
unsteady aerodynamics by using a Reduced Order Model (ROM)
that allows describing the unsteady flow in the form of a small
number of spatial/temporal modes (typically less than one hun-
dred) compared with the very large number of grid points in the
full-order model (on the order of 5–50 million or more) [17–19].
The ROM can then predict the responses to an arbitrary input
much faster than computing the input in a full CFD solution [20].

The creation of ROMs using CFD is an area of active research.
These models can be classified into nonparametric and parametric
models depending on the identification methods used [21,22]. The
parametric models provide a structure for representing aerody-
namic forces and moments in the aircraft equations of motion.
Nonparametric models, on the other hand, are concerned with the
measured input–output behavior of the aircraft dynamics [21].
ROMs can also be classified into time domain and frequency
domain approaches [9]. While time-domain models are necessary
for rotary wing applications and predicting responses to a time-
dependent input, the formulation in frequency-domain is required
for determination of flutter instability boundary [23]. Some
popular ROMs are indicial response methods [24–27], proper
orthogonal decomposition (POD) [28,29], Volterra theory [22,30–32],
surrogate-based recurrence framework (SBRF) [33,34], radial basis
functions (RBF) [35–37] and state-space modeling [38,39]. Notice that
some of these models, such as indicial response methods, Volterra
theory, and POD analysis, can be performed either in the time or
frequency domain. Recent applications of POD methods has been
reviewed by Lucia et al. [9] and therefore these methods are not
discussed here. Also, the state space model proposed by Goman and
Khrabrov [38] uses experimental data to estimate the model
unknowns. There are only a few published studies of this model using
CFD and therefore the model is also not discussed. This paper reviews
the recent development and applications of Volterra theory, linear and
nonlinear indicial response methods, RBF, and a SBRFmodel using CFD
data. These models were selected because they have been used or can
be used in the aircraft S&C analysis.

1.3. Current aerodynamic modeling efforts

Early numerical models of unsteady aerodynamics were mostly
developed for flows in cascades and turbomachineries and were
based on the Fourier series decomposition of the inputs and
responses [40–44]. These models can be performed either in the
time or frequency domain. However, for time-periodic flows, such
as flows about helicopter rotors and flows in turbomachinery, the
frequency-domain models can dramatically reduce the computa-
tional time compared with time-domain models [45]. The recent
modeling efforts of the Fourier-based methods were published in a
special section of the International Journal of Computational Fluid
Dynamics [45–50] and have also been reviewed by He [51].
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For fixed wing aircraft, aerodynamic damping derivatives are
usually used to represent unsteady effects. However, a derivative-
based model breaks down for modern combat aircraft undergoing
agile maneuver at high angles of attack [8]. A wide range of efforts are
emerging to extend the application of these models to advanced
fighter aircraft. For example, the work of Morton and his colleagues
[52–55] at the Air Force SEEK EAGLE Office (AFSEO) involves aero-
dynamic modeling for aircraft flight simulation, control system design,
and optimization. They begin with a global nonlinear parameter
modeling technique proposed by Morelli [56] that describes the
functional dependence between a motion and its computed aero-
dynamic response in terms of force and moment coefficients. They
then attempt to find a new model which has adequate complexity to
capture the aerodynamic nonlinearities while keeping the number of
terms in the model low. The latter requirement improves the ability to
identify model parameters, resulting in a more accurate model with
good predictive capabilities. The model unknowns are then identified
using CFD simulations of some training maneuvers. These techniques
have been incorporated into the Department of Defense (DoD)
CREATE-AV code, Kestrel.

Various reduced order unsteady aerodynamic models have
also been used at the University of Michigan. Skujins and Cesnik
[57–59], for example, predicted unsteady loads due to the oscillation
of multiple vehicle elastic modes using convolution of modal step
responses along with a correction factor which takes into account
different oscillation amplitudes, fight conditions, and nonlinear
aerodynamic effects due to multi-modal oscillations. Glaz et al.
[33] also described a reduced-order nonlinear unsteady aerody-
namic modeling approach suitable for analyzing pitching/plunging
airfoils subject to fixed or time-varying freestream Mach numbers.

The reduced-order model uses Kriging surrogates to account for
flow nonlinearities and recurrence solutions to account for time-
history effects associated with unsteadiness. They showed that the
model can accurately predict time-varying freestreamMach number
effects and is therefore applicable to rotary wing and fixed wing
applications. Later, they used this modeling approach for the
prediction of unsteady lift, pitch moment, and drag of an airfoil
pitching/plunging under dynamic stall conditions [60].

The aerodynamic modeling studies at Duke University are mainly
focused on frequency domain techniques of Harmonic Balance (HB),
POD-based models, and Volterra series, all applied to different aero-
mechanics problems including flutter, forced response, limit cycle
oscillations, multistage flows, and non-synchronous vibrations. The HB
approach assumes that unsteady flows are temporally and spatially
periodic and then flow variables are represented by a Fourier series in
time with spatially varying coefficients [61]. The full data at each grid
point is then reduced to 2Nþ1 coefficients, where N is the number of
harmonics retained in the Fourier series representation of the flow.
The two other models used at Duke are based on POD and Volterra
series. For example, Thomas et al. [62] applied POD-based models to
an inviscid flow transonic wing configuration and reduced the CFD
model with over three quarters of a million degrees of freedom to a
system with just a few dozen degrees of freedom, while still retaining
the accuracy of the unsteady aerodynamics of the full system
representation. Also, the Volterra series approach by Balajewicz and
his colleagues [63,64] was investigated for flutter boundary and LCO
analysis. They used a pseudo-inverse approach and training inputs
from the full-order system to identify Volterra kernels.

At Stanford University, POD methods have been used
for unsteady aerodynamic analysis by Farhat and his colleagues.

Nomenclature

A unit step function
a acoustic speed, m/s
C(k) Theodorsen function
CL lift coefficient, L=q1S
CL0 zero-angle of static lift coefficient
CLα lift coefficient derivative with angle of attack, 1/rad
CLq lift coefficient derivative with normalized pitch rate, 1/

rad
Cl roll moment coefficient
Cm pitch moment coefficient
Cm0 zero-angle of attack pitch moment coefficient
Cmα pitch moment coefficient derivative with angle of

attack, 1/rad
Cmq pitch moment coefficient derivative with normalized

pitch rate, 1/rad
CN normal force coefficient
Cn yaw moment coefficient
CY side force coefficient
c mean aerodynamic chord, m
f frequency, Hz
H plunging motion amplitude, m
h plunging motion vertical placement, m
k reduced frequency, ωc=2V
L lift force, N
M Mach number, V/a
P pressure, Pa
p normalized roll rate, 1/rad
_q time rate of pitch rate, rad/s2

q normalized pitch rate, 1/rad
q1 freestream dynamic pressure, Pa

Re Reynolds number, ρVc=μ
r normalized yaw rate, 1/rad
S reference area, m2

St Strouhal number, St ¼ 2fH=V
s normalized time, 2Vt=c
t time, s
tn non-dimensional time step, Vt=c
t0 start time, s
V freestream velocity, m/s
ut internal state vector
u; v;w velocity components in X, Y and Z-axis, m/s
x input vector
Y side-force, N
y output vector

Greek

_α normalized time rate of angle of attack, 1/rad
α angle of attack, rad
αA pitch amplitude, rad
α0 mean angle of attack, rad
αe effective angle of attack, rad
β side slip angle, rad
ω circular frequency, rad/s
ΦðtÞ Wagner function
Ψ ðtÞ Küssner function
ρ density, kg/m3

θ pitch angle, rad
θA pitching motion amplitude, rad
μ air viscosity
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For example, Lieu and Farhat [65] proposed a ROM based on POD
for evaluating aeroelastic frequencies and damping ratio coeffi-
cients of the F-16 aircraft. They extended previous ROMs to a
multiple state variable model by including the variation of Mach
number and angle of attack flight conditions. Jameson and his
colleagues at Stanford have also applied HB techniques to accel-
erate the convergence of unsteady flows to a periodic steady state
[66,67]. The HB techniques have also been successfully tested by
Badcock and his colleagues at the University of Liverpool [68,69].

Time domain based neural networks have also been used to
model unsteady aerodynamics [70–73]. Olcer et al. [70] used neural
networks for modeling the unsteady aerodynamic responses to a
trailing edge flap deflection and to extract a linear time-invariant
model of the flap actuator. Marques and Anderson [71] used a
temporal neural network to approximate the unsteady lift and pitch
moment of a two dimensional airfoil with changes in angle of attack
in the transonic regime. Faller and Schreck [73] also used a neural
network to predict the time-dependent surface pressures of a
pitching wing. The network inputs included the instantaneous pitch
angle, angular velocity, and the initial surface pressure coefficients
at t0. The network output then predicted the surface pressures at
time t0þΔt. These predictions were fed back as the input to the
network to predict surface pressures at the next time. This process
continues in time until it reaches some final time.

Some other works to be mentioned include the studies at the
University of Maryland [74–76,76], the work of Raveh [77,78,20] at the
Israel Institute of Technology, the work of Beran [9,79] at the Air Force
Research Laboratory, the work of Silva [30,22] at NASA Langley, and
the work of Murman [80,81] at NASA Ames. Finally, researchers at the
U.S. Air Force Academy (USAFA) have made a strong effort toward the
development of unsteady aerodynamic reduced order models applied
to flight mechanics and flow control.

2. Review of unsteady aerodynamic prediction methods

The input to, and output from, a model are defined by x(t) and y
(t), respectively. Note that for a dynamic system (a system with
memory) y is said to be a functional of x, not the function of x [82].

2.1. Classical theories

Classical solutions have been obtained for the airfoil lift and
pitch moment responses to harmonic pitching and plunging
motions and wind gusts by Theodorsen [83], von Karman [84],
Küssner [85], Sears [86], and Wagner [87]. Pitching and plunging
oscillations are shown in Fig. 1 and are described by

θðtÞ ¼ θA cos ðωθtÞ; hðtÞ ¼H cos ðωhtÞ ð1Þ
where θA and ωθ are the pitch amplitude and rotational velocity,
respectively; h is the vertical placement of the airfoil, H is the plunge
amplitude, and ωh denotes the oscillatory frequency. The reduced
frequencies of kθ and kh are defined as ωθc=2V and ωhc=2V , where c
is the airfoil chord and V is the freestream velocity. The plunge
motion has no rotation but the angle of attack changes due to the

vertical displacements of the airfoil; this angle is named the
“effective angle of attack”, which is denoted by αe and is defined as

αe ¼ tan �1
_h
V

 !
ð2Þ

The maximum effective angle of attack for a plunge oscillation
starting at zero degrees angle of attack is determined by the Strouhal
number (defined as St¼ 2fH=V) such that αmax

e ¼ tan �1ðπ StÞ. The
Strouhal number is a dimensionless number that is useful for
describing unsteady flow of oscillating geometries [16]. There are a
number of theories to predict the aerodynamic loads of pitching and
plunging motions. Wagner [87] developed a theory based on
potential flow, and detailed the unsteady lift coefficient of an airfoil
undergoing a plunging motion as

CL ¼ 2π
Z t

0
Φðt�τÞ _αeðτÞ dτ ð3Þ

where _αe ¼ dαe=dt; CL is the lift force coefficient and ΦðtÞ is Wagner
function with its exact values known in terms of Bessel functions.
The Wagner functionwas approximated in non-dimensional time by
a two-pole exponential function as [75]

ΦðsÞ ¼ 1�0:165 expð�0:0455sÞ�0:335 expð�0:3sÞ ð4Þ
where s¼ 2Vt=c is a non-dimensional time. Wagner's approximation
function is shown graphically in Fig. 2(a) which shows that the
unsteady lift increases asymptotically in time to reach the quasi-
steady value at one degree angle of attack, while it reaches almost
90% of this value after traveling a distance equivalent to 15 semi-
chords [88].

Lomax [89] used the linearized Euler equations to derive exact
initial values of Wagner function for a flat-plate airfoil as

ΘðsÞ ¼ 1
2π

4
M

1�1�M
2M

s
� �

ð5Þ

where M is the Mach number. Note that Lomax's theory is valid
only for the initial time of plunging motions. Theodorsen [83],
assuming potential flow, used the method of conformal mapping
to derive the solution of unsteady aerodynamic loads of a thin
airfoil undergoing small pitching and plunging oscillations. His
theory was expanded by Hodges and Pierce [90] for the lift and the
pitch moment about the quarter-chord as

CL ¼ 2π
_h
V
þθþ c _θ

2V

" #
CðkÞþπ

2
c €h

V2þ
c _θ
V
�ac2 €θ

V2

 !
ð6Þ

Cm ¼ �π

2
1
2
c €h

V2þ
_cθ
V
þ 1

8
�a
2

� �
c2 €θ

V2

" #
ð7Þ

where a is the pitch axis location with respect to the half-chord as
shown in Fig. 1. In this definition, the leading edge and trailing
edge correspond to values of a¼ �1 and a¼1, respectively. In
Eq. (6), the first of the two terms in the lift shows the circulatory
lift and the second term shows non-circulatory effects. Non-
circulatory effects, also called added mass, are generated from
motion accelerations. Circulatory effects, on the other hand, are
generated from the differences in the velocity on the upper and
lower surfaces of the airfoil. For the airfoil pitch moment about the
quarter-chord the non-circulatory terms are usually negligible.

The effective angle of attack is defined as

αe ¼ CðkÞ
_h
V
þθþ c _θ

2V

" #
ð8Þ

where C(k) is called Theodorsen function and is given by

CðkÞ ¼ Hð2Þ
1 ðkÞ

Hð2Þ
1 ðkÞþ iHð2Þ

0 ðkÞ
ð9Þ

Fig. 1. Airfoil pitch and plunge maneuvers.
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where H0 and H1 are Hankel functions of the first and the second
kind. The Theodorsen function is real and equals one for the steady
case (i.e. k¼0) and includes an imaginary and a real part for a
moving airfoil. These parts are expressed as CðkÞ ¼ FðkÞ� iGðkÞ and
are shown in Fig. 2(b) for reduced frequencies up to two. The figure
shows that F(k) decreases with reduced frequency, thus the phase
lag between the motion variables and unsteady loads is increased.
The Theodorsen function is related to the Wagner function as [91]

CðkÞ ¼ ðikÞ
Z 1

0
ΦðτÞe� ikτ dτ ð10Þ

and is approximated as

CðkÞ ¼ 1� 0:165ðikÞ
ikþ0:0455

�0:335ðikÞ
ikþ0:3

ð11Þ

Also, Küssner [85] defined a “Wake Vortex Function”, later named
the Küssner function, Ψ ðtÞ, to find the unsteady lift of an airfoil in
response to a sharp-edged gust with an upwash velocity of ωg given
as

CL ¼ 2π=Vðωgð0ÞΨ ðsÞþ
Z s

0
Ψ ðs�σÞ _ωgðσÞ dσÞ ð12Þ

where _ωg ¼ dωg=dt. The Küssner function can be related to Wagner
function using a Fourier-integral and was approximated in terms of
the Jones exponential expansion as

Ψ ðsÞ ¼ 1�0:5 expð�0:15sÞ�0:5 expð�sÞ ð13Þ
Fig. 2(a) compares Küssner and Wagner functions; it shows that
Küssner function is zero at s¼0 and reaches unity for very large s
values. While Küssner function predicts the responses to a sharp-
edged gust, Sears [86] derived the frequency response to a sinusoi-
dal gust as well. Note that these theories are limited only to
potential flow and small-amplitude airfoil motions. For a modern
combat aircraft maneuvering at high angles of attack, a full non-
linear, large-amplitude, unsteady aerodynamic model is required.

2.2. Volterra theory

The Volterra theory [92] is considered one of the most
important tools for the representation of nonlinear dynamic
systems in the time and frequency domains [93]. The approach
is a functional Taylor series expansion for dynamic systems (often
called functional expansions) [94], therefore, the limitations of

Taylor series also apply to the Volterra series [94], e.g. the Volterra
series typically is accurate for weak nonlinearities [95]. The theory
of functional expansions was first introduced by Volterra in a book
published in 1930 [92]. This work and the further developments
by others (for example [96–98]) have been extensively used in
electrical and biological systems engineering [99–103]. Recently,
there is an increasing interest in using Volterra series in the field of
nonlinear unsteady aerodynamic loads modeling [10,104].

For a dynamic system, the output in a given time instant of t1
depends on the input values over some finite interval [82], i.e.

y t1ð Þ ¼ F xðtÞ; t1�Trtrt1½ � ð14Þ
where F is a continues functional of the input. Volterra used a p-th
order series to estimate the values of y in a given time as

yðtÞ ¼H0þ ∑
p

i ¼ 1
HiðxðtÞÞ ð15Þ

where H0 is the steady-state term and is constant; Hi represents
the i-th order Volterra operator. In Eq. (15), p may be indefinite to
make sure that y converges to the exact solution. However, it has
been shown that for a time-invariant system, the output of y for
each tZ0 can be approximated by the right side of Eq. (15) for
sufficiently large but finite values of p as well [82]. For such a
system, the Volterra operator is defined as an i-fold convolution
between the input, xðtÞ, and the i-th order Volterra kernel, Hi, i.e.

HiðxðtÞÞ ¼
Z t

�1
⋯
Z t

�1
Hi t�τ1; t�τ2;…; t�τið Þ ∏

i

n ¼ 1
x τnð Þ dτn ð16Þ

and using the commutative law, it can also be written as

HiðxðtÞÞ ¼H0þ
Z t

�1
⋯
Z t

�1
Hi τ1; τ2;…; τið Þ ∏

i

n ¼ 1
x t�τnð Þ dτn ð17Þ

Korenberg and Hunter [82] mentioned some Volterra kernel
characteristics: (1) the zero order Volterra kernel of H0 is a
constant value and found from the zero-input response of the
system, (2) for a casual system the kernel of Hi τ1; τ2;…; τið Þ ¼ 0
when any of τ1; τ2;…; τi is less than zero, and the lower limits of
the integrals can be set to zero, and (3) it can be assumed that each
kernel is symmetric with respect to any permutation of τ1; τ2;…; τi.
The Volterra series approximation can be used to represent any
continuous-time, time-invariant, finite memory, and single-input
and single-output system. The nonlinear unsteady aerodynamics is
considered such a system (ignoring those hysteresis effects that
make the solution infinite-memory) except that it is a multi-input

Fig. 2. Unsteady aerodynamic force functions for incompressible flow over an airfoil. (a) Wagner and Küssner functions and (b) Theodorsen's functions.
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and multi-output system. For a forced oscillation about the pitch
axis, the output function y is defined as y¼ CL;D;mðtÞ (correspond-
ing to lift, drag, and pitch moment) and the input vector includes

xðtÞ ¼ ðαðtÞ; qðtÞ; _qðtÞÞ ð18Þ

where q and _q denote normalized pitch rate and its first time
derivative, respectively. Classical Volterra series cannot properly
identify any nonlinear cross-coupling effects between multiple
input parameters [5]. Balajewicz et al. [105] applied a multi-input
Volterra theory to the weakly nonlinear aerodynamic modeling of
NACA 0012 airfoil under pitching and plunging motions. Their
results showed a significant improvement in the accuracy over a
single-input Volterra model. Also, Ghoreyshi et al. [34] proposed a
multi-input Volterra series for aerodynamics prediction of the
X-31 aircraft pitching in the transonic speed range. This series is
written as

yðtÞ ¼ Ψ x1ðtÞ; x2ðtÞ;…; xmðtÞð Þ ¼ ∑
p

i ¼ 1
Hm

i ð19Þ

where the term Hm
i is the multi-input Volterra operator defined as

a mp-fold summation of p-fold convolution integrals between the
inputs and the p-th order multi-input Volterra kernels [105]. The
output response up to second order is rewritten as

yðtÞ ¼H0þ ∑
m

j ¼ 1

Z t

�1
Hxj

1 ðt�τÞxjðτÞ dτ

þ ∑
m

j1 ¼ 1
∑
m

j2 ¼ 1

Z t

�1

Z t

�1
H

xj1 ;xj2
2 t�τ1; t�τ2ð Þxj1 τ1ð Þxj2 τ2ð Þ dτ1 dτ2

þO jxj3� � ð20Þ

Note that the superscripts in Eq. (20) identify to which inputs
the kernel corresponds, for example, the second-order kernel
H

xj1 ;xj3
2 correlates the inputs xj1 and xj3 . Also, it should be noted

that the second and higher-order kernels are symmetric with
respect to the arguments, H

xj1 ;xj3
2 ¼H

xj3 ;xj1
2 . To estimate the output

of y using a Volterra series, the kernels of Hm
i must be determined

using a system identification method. Unfortunately, the kernels of
a nonlinear dynamic system (third- and higher-order kernels) are
very difficult to compute [22].

2.3. Indicial theory

The Heaviside response to a unit step change in input function
(angle-of-attack, pitch rate, etc.) is the so-called indicial response.
Assuming a linear relationship between the input function and the
output, a linear ROM is defined as the convolution (or Duhamel's
superposition [106]) of the indicial response with the derivative of
the forcing function [107]

yðtÞ ¼ xð0ÞAðtÞþ
Z t

0
Aðt�τÞ _xðτÞ dτ ð21Þ

where _x ¼ dx=dt; A represents the unit response, or indicial
response, of the system and t�τ is elapsed time; x is input or
forcing parameter and xð0Þ shows input value at time zero.

The indicial response functions are used as a fundamental
approach to represent the unsteady aerodynamic loads. For aero-
dynamic loads modeling, the mathematical models are detailed by
Tobak et al. [25,26] and Reisenthel et al. [108,109]. It is assumed
that lift and pitch moment depend on angle of attack and pitch
rate. Indicial responses due to a unit step change in angle of attack,
α, and normalized pitch rate, q, are denoted by Cjα and Cjq,
respectively, where Cj ¼ ½CL;Cm� representing lift and pitch
moment coefficients (or any other aerodynamic coefficient). The
unsteady lift and pitch moment are then calculated by adding

Duhamel's integrals with respect to α and q, i.e.

CjðtÞ ¼ Cj0þαð0ÞCjαðtÞþ
Z t

0
Cjαðt�τÞ _αðτÞ dτþ

Z t

0
Cjqðt�τÞ _qðτÞ dτ

ð22Þ
where Cj0 denote the zero-angle-of-attack lift and pitch moment
coefficients and are found from static calculations; αð0Þ is the angle
of attack at time zero or the initial time of motion. Note that
αð0ÞCjαðtÞ is different from Cj0. The motions considered here start
from a steady-state solution with qð0Þ ¼ 0 and therefore the term
of qð0ÞCjqðtÞ was not added to the equation. Using the “differential
theorem of the convolution integral” [110], Eq. (22) changes to

CjðtÞ ¼ Cj0þ
d
dt

Z t

0
Cjαðt�τÞαðτÞ dτ

� �
þ d
dt

Z t

0
Cjqðt�τÞqðτÞ dτ

� �
ð23Þ

This equation predicts lift and pitch moment responses in the
linear regime of a flow. A nonlinear model is also considered
where the responses in the angle of attack depend on both the
angle of attack and Mach number. Also, it is assumed that the
response functions with respect to the pitch rate change with
changes in freestream Mach number but do not vary with the
changes in angle of attack at low to moderate angles of attack. This
is a reasonable assumption based on aerodynamic prediction
methods described in aircraft design textbooks [111]. The unsteady
nonlinear lift and pitch moment coefficients at time t are then
obtained using nonlinear indicial response theory as

CjðtÞ ¼ Cj0ðMÞþ d
dt

Z t

0
Cjαðt�τ; α;MÞαðτÞ dτ

� �

þ d
dt

Z t

0
Cjqðt�τ;MÞqðτÞ dτ dτ

� �
ð24Þ

where M denotes the freestream Mach number. The response
functions due to pitch rate, i.e. Cjqðt;MÞ for j¼ L;m, can be estimated
by using a time-dependent interpolation scheme from the observed
responses. The pitch rate indicial functions are next used to
estimate the second integrals in Eqs. (23) and (24), however, the
estimation of nonlinear Cjαðt; α;MÞ for j¼ L;m needs more explana-
tion. Assume a set of angle of attack samples of α¼ ½α1; α2;…; αn� at
freestream Mach numbers of M¼ ½M1;M2;…;Mm�, where the spa-
cing can be uniform or non-uniform. The indicial functions at
each angle of αi; i¼ 1;2;…;n, degrees and Mach number of
Mk; k¼ 1;2;…;m, are calculated by holding the angle of attack
fixed at α¼ αi degrees, and then performing a small step in the
angle of attack to α¼ αiþΔα. The indicial functions are then
computed by taking the differences between time-varying
responses occurring after the step and the steady-state solution at
α¼ αi degrees, and dividing them by the magnitude of the step.

Ghoreyshi and Cummings [112] extended the indicial response
method to include lateral aerodynamic coefficients as well.
Assuming that the lateral loads only depend on side-slip angle
(β), normalized roll rate (p), and normalized yaw rate (r), the
unsteady lateral forces and moments using indicial functions are
written as

CjðtÞ ¼
d
dt

Z t

0
Cjβðt�τ; α;MÞβðτÞ dτ

� �
þ d
dt

Z t

0
Cjpðt�τ;MÞpðτÞ dτ

� �

þ d
dt

Z t

0
Cjrðt�τ;MÞrðτÞ dτ

� �
ð25Þ

where j¼ Y ; l;n denote the side-force, roll and yaw moments,
respectively. The functions of CLαðt; α;MÞ, Cmαðt; α;MÞ, CLqðt;MÞ,
Cmqðt;MÞ, CYβðt; α;MÞ, Clβðt; α;MÞ, Cnβðt;α;MÞ, CYpðt;MÞ, Clpðt;MÞ,
Cnpðt;MÞ, CYrðt;MÞ, Clrðt;MÞ, and Cnrðt;MÞ are unknown and the
methods for calculating them in CFD will be reviewed. Note that
the integral operation in the indicial theory allows for predicting
airload responses from time-histories of motion. However, similar
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to the Volterra series, the indicial theory is typically accurate for
weak nonlinearities.

2.4. Surrogate-based recurrence-framework

The set of nonlinear equations describing the CFD system can
be viewed as a multi-input/multi-output dynamic system with a
mathematical model in state space given by an ordinary differ-
ential equation of the form

_ut ¼ f ðut ; xtÞ ð26Þ
and an output equation as

yt ¼ hðutÞ ð27Þ
with given initial condition u¼ u0 for t ¼ t0 and

utARr ; ytARn; xtARr

where u is a r-dimensional vector of internal state variables over
the field R of real numbers, x is a vector of the inputs to system,
and y is m-dimensional vector of system outputs. For a discrete-
time dynamical system, the equations change to

ukþ1 ¼ f ðuk; xkÞ
yk ¼ hðukÞ for k¼ 0;1… ð28Þ
where k is an integer value showing discrete time values. The state
function f is a smooth function that maps the current state uk and
the input xk into a new state ukþ1, and the output function h maps
the state uk into the output yk given as [113]

f : Rr � Rn↦Rr ; h : Rr↦Rm

In this system, the outputs can be determined from the states at
time instant k only, therefore the past history of the system is
irrelevant [114]. If the state variables are directly measured, the
functions f and h can be approximated using neural networks or
surrogate-based models. However, in many practical situations,
measuring all state variables is limited.

Referring to unsteady aerodynamic problem during pitching
and plunging motions, the discretized governing equations of fluid
dynamics serve as the state space functions and the input vector of
x takes the form of

xðtÞ ¼ ðαðtÞ; _αðtÞ; €αðtÞÞ ð29Þ
also, the output vector is defined as y¼ CL;D;mðtÞ. In this system, the
internal state vector includes ðρ; p;u; v;w; EÞ that correspond to the
values of density, pressure, velocity components, and energy at
each grid point. This large amount of data makes the identification
of Eq. (28) a very complex task. Fortunately, there are methods
available that allow us to reconstruct the state space model by
mapping only the input and output data.

For a finite-time interval and a system described by Eq. (28),
Levin and Narendra [115] used the Implicit Function theorem [116]
to write the output vector at any instant as a function of the past n
values of the inputs and the past m values of the outputs, i.e.,

ykþ1 ¼Φðyk; yk�1;…; yk�mþ1; xk; xk�1;…; xk�nþ1Þ ð30Þ
In Eq. (30), Φ is a vector-valued nonlinear function that maps the
inputs to the outputs, and m and n are integer numbers represent-
ing the past values in the output and input, respectively. Eq. (30)
preserves the characteristics of the state-space model but no
longer depends on system internal states. The input–output
mapping, Φ, can be learned using neural networks when the time
histories of input and output are available. This network is often
named a recurrent neural network [114], where the network
output becomes part of the next input vector [72].

Ghoreyshi et al. [36] extended the mapping function in Eq. (30)
to allow for primary and secondary measurements. Assume that
secondary measurements of ~ytARm are also available. These data

are assumed to be cheaper to measure than primary data and
hence they are available at many combinations of the input vector,
~xt . An additional mapping is then defined between this system
input and the secondary data, i.e.

~ykþ1 ¼ ~Φs ð ~yk; ~yk�1;…; ~yk�mþ1; ~xk; ~xk�1;…; ~xk�nþ1Þ ð31Þ

The mapping in Eq. (31) is then used to predict secondary output
values at the n past values of the primary input vector, x. The
function in Eq. (30) is then augmented by this evaluation in the
form of

ykþ1 ¼Φtðyk; yk�1;…; yk�mþ1; xk; xk�1;…; xk�n

þ1; ~yk; ~yk�1;…; ~yk�nþ1Þ ð32Þ

such a model brings the information of secondary data into the
mapping function and aids in reducing the computational cost.
Central to the generation of the reduced-order model is the
computation of the function Φ in Eqs. (30)–(32). Without a
closed-form analytical expression, a numerical approximation of
Φ is constructed using a number of CFD solutions. For a pitching
aircraft, any motion can be expressed as a functional of three
parameters, e.g., α0, αA, and k, that represent the mean angle of
attack, amplitude, and reduced frequency, respectively. These
independent variables form a parameter space, which represents
the envelope of all possible flow conditions in which the aircraft
configuration is expected to operate. To generate a consistent set
of unsteady aerodynamic loads in response to a given aircraft
motion time history, the training cases at which CFD solutions are
calculated should be representative of the expected flow condi-
tions. Several Design of Experiment methods are available in the
literature including the Kriging-based framework [117]. Let NT be
the number of training cases at which CFD solutions are available.
Each training case consists of different combinations of the
independent parameters,

xi ¼ αiðtÞ; _α iðtÞ; €α iðtÞ;…ð Þ for i¼ 1;…;NT ð33Þ

and the corresponding aerodynamic loads are indicated by yiðtÞ.
The approximation of the function Φ is obtained by interpolating
the sampled data in the form of an input/output relationship.
Kriging interpolation is a common interpolation method, but for
increasing number of independent parameters the problem can be
ill-conditioned. An alternative approach is the multi-linear inter-
polation technique, which is in general faster than the Kriging
interpolation.

2.5. Radial basis functions

The RBF model used is similar to SBRF because they are both
created by the input–output mapping function of Φ given in Eq.
(30), except that the function Φ is now approximated through RBF
neural networks from a set of training data. The RBF network
provides an approximation of the functions based on the location
of data points, and is generally much faster than multi-layer feed-
forward neural networks [114]. Given an input vector of
fXc

j : j¼ 1;‥; pg; Xc
j AR and a corresponding output vector of

fYc
j : j¼ 1;‥; pg; Yc

j AR, the RBF approximates the output at a
new given point as

Ŷ ðXnÞ ¼ ∑
P

k ¼ 1
αkΦiðXÞ ð34Þ

such that

Ŷ ðXc
j Þ ¼ Yc

j for j¼ 1;2;…; p ð35Þ

where αk are the weights of the linear combiners. The functions Φi

are named Radial Basis Functions and are often described by a
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Gaussian basis function as

ΦiðXÞ ¼ exp � JXn�Xc
j J

2

β2

 !
ð36Þ

where β is a real variable to be chosen by the user, and J � J
denotes the Euclidean norm such that the functions Φi will vanish
at sufficiently large values of JXn�Xc

j J . In terms of the network
structure, the RBFNN is a two-layer processing structure with one
hidden layer that approximates Φi at each node. Then, the output
layer is a set of linear combiners of approximation from hidden
layer nodes. The network is then trained to minimize the error
between the target (desired) values and the network predicted
values.

3. Review of system identification methods

3.1. System identification of CFD simulations

System identification (SID) refers to the process of constructing
a mathematical model to describe the relationship between input
and output data of a system under testing [52]. The mathematical
model structure can take various forms depending upon the
intended use, i.e. what is assumed to be known, and what is to
be computed. Usually wind tunnel and flight-test data are used to
obtain accurate and comprehensive mathematical models of air-
craft aerodynamics for aircraft flight simulation, control system
design and evaluation, and dynamic analysis [118,56]. Recently,
aircraft system identification has been used in cooperative
approaches with CFD to take advantage of the strength of both
approaches or having one approach fill in the gaps where the
other cannot be used [52,53]. The wide range of SID tools that have
been developed for aircraft system identification (including mod-
eling techniques proposed by Morelli [56]) can easily be used to
analyze CFD data computed for aircraft in prescribed motions. The
modeling effort is potentially global because the independent
variables (α, _α , β, etc.) are varied over a large range. These globally
valid models and their associated smooth gradients are useful for
optimization, robust nonlinear control design and global nonlinear
stability, and control analysis.

3.2. Volterra kernels

The Volterra kernels need to be determined for creation of a
Volterra-based ROM. Several methods exist to identify these
kernels in the time and frequency domains. The techniques based
on a continuous time impulse are proposed by George [119] and
Schetzen [120] to estimate these functions. Silva [31] also used a
method based on the impulse functions to directly calculate first-
and second-order kernels using CFD. In his approach the first-
order kernel is a combination of the response to unit and double
unit impulses at time t1 ¼ T . The second-order kernel is a combi-
nation of two successive unit impulses at time t1 ¼ T and
t2 ¼ TþΔt and two unit pulses, one at time T, and a second at
time TþΔt. Although this approach is straightforward, it faces
some challenges as well. The main challenge is that an impulse
response is a mathematical concept and has no exact equivalent in
experimental or numerical studies [121]. The numerical simulation
of an impulse is very complicated as the impulse occurs over a
very short period of time (theoretically for Δt-0). A computa-
tional solution is to use a discrete time impulse in CFD. However,
the functions found using these simulations depend on the time
discretization used and are not directly related to Volterra kernels.
Milanese and Marzocca [121] used a distributed impulse instead,
however the simulation of these impulse functions strongly
depends on the time step used. Raveh [20] showed that the

estimated kernels are very sensitive to the inaccuracies in defining
an impulse function in CFD. Also, a highly nonlinear system needs
higher-order kernels and the impulse approach is mainly limited
to the second-order kernel identification. A way to eliminate the
need for impulse simulations is the indirect identification method.

Tromp and Jenkins [122] used CFD-calculated indicial
responses to identify the first-order kernel of an airfoil undergoing
a pitch oscillation. For higher-order kernels, Balajewicz and Dowell
[64] proposed a pseudo-inverse approach, where values of aero-
dynamic coefficients and the time-history of the motion variables
are known from the CFD simulation and are used as a training
input. The CFD solution is discrete in time, and the time step is
indicated by Δt. Let x denote as xðtÞ ¼ xðnΔtÞ ¼ x½n�. The discrete-
time representation of Eq. (20) can be rewritten as

y½n� ¼ ∑
m

j ¼ 1
� ∑

n

k ¼ 0
Hxj

1 ½n�k�xj½k�

þ ∑
m

j1 ¼ 1
∑
m

j2 ¼ 1
� ∑

n

k1 ¼ 0
∑
n

k2 ¼ 0
H

xj1 ;xj2
2 n�k1;n�k2

� 	
xj1 k1
� 	

xj2 k2
� 	þ⋯

ð37Þ
The identification of discrete-time Volterra kernels involves the

resolution of an overdetermined system. Values of aerodynamic
coefficients and the time-history of the motion variables are
known from the CFD simulation and are used as a training input.
Let y¼ y½0�; y½1�;…; y½n�ð ÞT denote each aerodynamic load com-
puted using CFD, and let A contain the permutations of input
parameters relevant to the unsteady motion. Eq. (37) can be recast
in the form of

y¼ Ab ð38Þ
where the vector b contains the unknown Volterra kernels. The
matrix A is in general non-square, with more rows than columns.
Several numerical methods are available to solve least squares
problems, e.g., direct inversion of ATA, Gaussian elimination,
Moore–Penrose generalized inverse approach and QR factoriza-
tion. However, the Moore–Penrose approach and QR factorization
are more accurate than Gaussian elimination and the direct
inversion solutions. The cost of QR factorization is O n2

� �
, and

the Moore–Penrose inversion involves O n3
� �

operations. Note that
computational resources attributable to the identification of the
Volterra kernels grow exponentially with order. Increasing the
order of the Volterra series introduces a requirement for a training
maneuver of sufficient duration. A remedy to this is the use of a
simplified form of the kernel parametric structure. For example,
Balajewicz et al. [105] proposed to set all off-diagonal terms of the
kernel to zero, i.e.

H
xj1 ;xj2 ;…;xjp
p n�k1;n�k2;…;n�kp

� 	¼ 0

for k1ak2a⋯akp ð39Þ
The Volterra kernels are then identified from Eq. (38) solving for b,
with y and A being known for a training maneuver. The matrix A is
then recomputed for a novel maneuver, and the low-order model
in Eq. (38) is used to predict the resulting unsteady aerodynamic
loads in place of the full-order system.

3.3. Indicial functions

The indicial functions can be estimated via analytical or
computational methods. The experimental tests are practically
nonexistent for impulse and step response functions. Wagner [87]
was the first to solve the indicial lift response of a thin airfoil due
to a step change in the angle of attack in incompressible flow, the
so-called Wagner function. His function is a single parameter
function and is sufficient to model the plunging motions of a thin
airfoil in incompressible flows.
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Since Wagner's original work, there have been numerous
contributions to obtain the approximations of response functions
in compressible flow as well; many of these solutions are reviewed
by Bisplinghoff et al. [123]. The most common way of calculating
the indicial functions in compressible flow is by using harmonic
(oscillatory) motions [76]. The Wagner function (Φ in Eq. (3)) and
Theodorsen function (C(k) in Eq. (9)) are related through a Fourier
integral or Laplace transform as shown in Fig. 3, because both
solutions are based on the same flow equations assuming the
same boundary conditions [124,125]. Similar relations can be
developed for the compressible indicial responses [76]. Mazelsky
and Drischler [126] used oscillatory data to obtain the indicial lift
and pitch moment responses for Mach numbers of 0.5 and 0.6. A
similar approach was used later by Dowell [127] to obtain the
indicial functions for transonic Mach numbers as well. However,
the derived indicial functions using harmonic motions depend
largely on the quality of motion, e.g. amplitude and frequency.

Recently, CFD simulations have been used for the approxima-
tion of response functions. The earliest computational efforts
involved the small perturbation potential code of Ballhaus [24]
and the Euler code of Magnus [128], both for applications to
airfoils. Singh and Baeder [129] used a surface transpiration
approach to directly calculate the angle of attack indicial response
using CFD. However, this approach has not been tested for pitch
rate indicial functions and aircraft configurations. Also, the
approach is not available in many commercial flow solvers that
do not provide access to the source code. Recently, Ghoreyshi et al.
[27] described an approach based on a grid motion technique for
CFD-type calculation of linear and nonlinear indicial functions.
This approach will be briefly described next.

Assuming that the flow solver allows all translational and
rotational degrees of freedom, the location of a reference point
on the aircraft is specified at each time step. In addition the
rotation of the aircraft about this reference point is defined using
the rotation angles of yaw, pitch, and roll. The aircraft reference
point velocity, va, in an inertial frame is calculated to achieve the
required angles of attack and sideslip and the forward speed. The
velocity is then used to calculate the aircraft location at each time
step. The initial aircraft velocity, v0, is specified in terms of Mach
number, angle of attack, and side-slip angle. The instantaneous
aircraft location for the motion is then defined from the relative
velocity vector, va�v0.

For CFD-type calculation of a step change in angle of attack, the
grid immediately starts to move at t¼0 to the right and downward
as shown in Fig. 4. The translation continues over time with a
constant velocity vector. Since there is no rotation, all the effects in
aerodynamic loads are from changes in the angle of attack. For a
unit step change in pitch rate, the grid moves and rotates
simultaneously. The grid starts to rotate with a unit pitch rate at
t¼0. To hold the angle of attack zero during the rotation, the grid
moves right and upward as shown in Fig. 4.

Ghoreyshi and Cummings [112] later used this approach to
generate longitudinal and lateral indicial functions for a generic
unmanned combat air vehicle (UCAV) and used these functions for
predicting the aerodynamic responses to aircraft 6DoF maneuvers.
However, extending the model to predict airloads of these
maneuvers could be computationally expensive because a large
number of indicial functions need to be calculated for each
combination of input parameters.

In more detail, the indicial method assumes the linearity of
output response with respect to input variables [130]. This means
the predicted indicial functions can be used for only small
amplitude oscillations at a fixed Mach number similar to the one
used for predicting indicial functions [130]. For motions at com-
pressible speeds and large amplitude, many indicial functions
need to be generated for each combination of angle of attack
and freestream Mach number. It should be noted, however, that
these models are still cheaper than full-order simulations because
the ROMs based on indicial functions eliminate the need to repeat
calculations for each frequency [24].

In order to reduce computational cost of model creation, a
special time-dependent surrogate-based modeling approach was
used by Ghoreyshi and Cummings [112] that predicts indicial
responses for a new point from available (observed) responses.
These observed responses were viewed as a set of time-correlated
spatial processes where the output is considered a time-
dependent function. Assume an input vector of xðtÞ ¼ x1ðtÞ;ð
x2ðtÞ;…; xnðtÞÞ where n represents the dimensionality of the input
vector. To construct a surrogate model for fitting the input–output
relationship, the unsteady aerodynamic responses corresponding
to a limited number of input parameters (training parameters or
samples) need to be generated. Design of Experiment methods, for
example, can be used to select m samples from the input space.
The input matrix Dðm� nÞ is then defined as

D¼

x11 x12 ⋯ x1n
x21 x22 ⋯ x2n
⋮ ⋮ ⋮ ⋮

xm1 xm2 ⋯ xmn

2
6664

3
7775 ð40Þ

where rows correspond to different combinations of the design
parameters. For each row in the input matrix, a time-dependent
response was calculated at p discrete values of time, and this
information is summarized in the output matrix of Zðm� pÞ as

Z¼

y11 y12 ⋯ y1p
y21 y22 ⋯ y2p
⋮ ⋮ ⋮ ⋮

ym1 ym2 ⋯ ymp

2
66664

3
77775 ð41Þ

Fig. 4. The grid motion for modeling a step change in angle of attack and pitch rate.

Fig. 3. Fourier transform relationship between oscillatory and indicial aerody-
namics [124].
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where for aerodynamic loads modeling, p equals the number of
iterations used in time-marching CFD calculations. The objective of
surrogate modeling is to develop a model that allows for predict-
ing the aerodynamic response of yðx0Þ ¼ y01; y02;…; y0p


 �
at a new

combination of input parameter of x0. To construct this surrogate
model, the responses at each time step are assumed as a separate
set, such that each column of the output matrix is a partial
realization of the total response. In this sense, p surrogate models
are created; they are denoted as ZiðDÞ for i¼ 1;2;…; p. A universal-
type Kriging function [131] is then used to approximate these
models. For more details about creating Kriging models, the reader
is referred to Ghoreyshi et al. [132]. Having created Kriging models
for each ZiðDÞ function, the total response at x0 is then combina-
tion of predicted values of each model, i.e.

~Z x0ð Þ ¼ ~Z1 x0ð Þ; ~Z2 x0ð Þ;…; ~Zp x0ð Þ

 �

ð42Þ

where ~ shows that Kriging model is an approximation of the
actual function. For modeling aerodynamics of a maneuvering
aircraft, the input matrix of D includes combinations of angle of
attack and Mach number, i.e.

D¼

α1 M1

α2 M2

⋮ ⋮
αm Mm

2
6664

3
7775 ð43Þ

so in this case n¼2 and x0 ¼ ½α0;M0�. The output vector is also
defined as y¼ ½CL;Cm;CY ;Cl;Cn� and therefore the output matrices
of Zj are

Zj ¼

Cj11 Cj12 ⋯ Cj1p

Cj21 Cj22 ⋯ Cj2p

⋮ ⋮ ⋮ ⋮
Cjm1 Cjm2 ⋯ Cjmp

2
66664

3
77775 ð44Þ

where j¼ ½L;m;Y ; l;n� represents lift, pitch moment, side force, roll
moment, and yaw moment coefficients, respectively. The unsteady
effects in drag force were assumed to be small and are not
included.

3.4. Training maneuvers

The focus of S&C research at USAFA and AFSEO has been to
effectively incorporate CFD into the model-development process

using dynamic CFD predictions of complete aircraft configurations.
This has lead to an innovative approach for modeling aircraft S&C
characteristics, the details of which can be found in McDaniel et al.
[19]. A schematic of the approach is graphically represented in
Fig. 5, and a summary is as follows:

1. CFD simulations are performed using computational training
maneuvers designed to excite the relevant flow physics
encountered during actual missions.

2. A mathematical ROM is built for the aircraft response.
3. The model is validated by comparing CFD simulations against

model predictions.
4. Predictions of all flight test points are made using the model to

determine the expected behavior of the aircraft.

A training maneuver (or multiple maneuvers) is needed to
provide enough information to learn the mapping between inputs
and outputs in Eq. (30) by using SBRF and RBF methods. Previous
studies to generate training maneuvers for aerodynamic charac-
teristics [56,133–136] are limited by the range of the motion
frequency content. A ROM identified from such a maneuver has
limitations with respect to S&C applications. Thus, the basic
requirement for a training maneuver to generate a reliable ROM
in S&C applications is that it sufficiently covers the desired
regressor space of state variables. A ROM built on data produced
by such motions can then be used to predict the aircraft aero-
dynamic behavior within the regressor space. The systematic
coverage of the regressor space can be, in general, treated as an
optimization problem of filling the multidimensional space with
strong constraints resulting from the fact that some axes of the
regressor space do not represent an independent variable. For the
current study, three special training maneuvers are reviewed:
linear chirp, spiral, and Schroeder. These maneuvers are defined
in Table 1 and some examples are shown in Fig. 6.

Fig. 5. Stability and control aerodynamic loads model-development process [19].

Table 1
Special training maneuvers.

Maneuver Definition

Linear chirp αðtÞ ¼ α0þαA sin ðωt2Þ
Spiral αðtÞ ¼ α0þαAt sin ðωtÞ
Schroeder

αðtÞ ¼ α0þαA ∑
n

k ¼ 1

ffiffiffiffiffiffiffiffi
1
2N

r
cos

2πkt
T

�πk2

N

 !
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In Table 1, α0 is the mean angle of attack, αA is the amplitude,
and ω is the angular velocity. The chirp maneuver used has a
constant amplitude and linearly increasing frequency in time. In
the spiral maneuver, the amplitude increases linearly in time, as
does the angle of attack. The Schroeder maneuver is a multi-stage
frequency sweep consisting of multiple cosine terms with a
specified phasing. This maneuver has three parameters that enable
direct control of the regressor space coverage: maneuver ampli-
tude, αA, maneuver length, T, and the number of frequencies in the
maneuver, N.

4. Flow solver

The flow solver used for this study is the Cobalt code [137] that
solves the unsteady, three-dimensional and compressible Navier–
Stokes equations in an inertial reference frame. In Cobalt, the
Navier–Stokes equations are discretized on arbitrary grid topologies
using a cell-centered finite volume method. Second-order accuracy
in space is achieved using the exact Riemann solver of Gottlieb and
Groth [138], and least squares gradient calculations using QR
factorization. To accelerate the solution of the discretized system, a
point-implicit method using analytic first-order inviscid and viscous

Jacobians is used. A Newtonian sub-iteration method is used to
improve the time accuracy of the point-implicit method. Tomaro
et al. [139] converted the code from explicit to implicit, enabling
Courant–Friedrichs–Lewy (CFL) numbers as high as 106. Some
available turbulence models are the Spalart–Allmaras (SA) model
[140], Wilcox's k–ω model [141], and Mentor's SST model [142].

5. Validation test cases

A range of test cases, from airfoil to full aircraft, have been used
to evaluate and validate the reduced order methods. Note that the
purpose of this review is not to present validation results of CFD
codes or grid-independence study, but rather to validate ROM
predictions against CFD data. Therefore, only one CFD code and
only one mesh (fine size) was used for each test case based on the
previous experience with CFD and mesh generation tools in
predicting unsteady aerodynamics.

All RANS meshes were generated in two steps. In the first step,
the inviscid tetrahedral mesh was generated using the ICEMCFD
code. This mesh was then used as a background mesh by TRITET
[143,144] which builds prism layers using an advancing front
technique. TRITET rebuilds the inviscid mesh while respecting the

Fig. 6. A spiral, a chirp, and a Schroeder training maneuver. (a) spiral maneuver; (b) chirp maneuver; and (c) Schroeder maneuver.

M. Ghoreyshi et al. / Progress in Aerospace Sciences 71 (2014) 167–217 177



size of the original inviscid mesh from ICEMCFD. Simulations of
aircraft configurations were run on the Cray XE6 machines at the
Engineering Research Development Center (ERDC) (Garnet with
2.7 GHz core speed and Chugach with 2.3 GHz core speed) which
have approximately 20,000 and 11,000 cores, respectively.

5.1. NACA 0012 Airfoil

Both Euler and RANS meshes are available as shown in Fig. 7. In
both meshes, the minimal distance from the body to each of the
outer boundaries is 20c, where c is the airfoil chord. The Euler

Fig. 7. The NACA0012 grid and static and dynamic validations. The static conditions are M1 ¼ 0:3 and Re¼ 5:93� 106. Static and AGARD CT2 experimental data are from
Ladson [145] and Landon [146], respectively. In (f) moment reference point is 0.25c. (a) Euler grid; (b) viscous grid; (c) static normal force coefficient; (d) static pitch moment
coefficient; (e) normal force coefficient of AGARD CT2; and (f) pitch moment coefficient of AGARD CT2.
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mesh was generated using Gridgen version 15.0, and is a struc-
tured mesh generated by normal extrusion of surface connectors.
The overview of the Euler mesh is shown in Fig. 7(a). The RANS
mesh volume is rectangular with the airfoil geometry centrally
located. The no-slip adiabatic wall boundary conditions are
employed at the body surface, and a modified Riemann-invariant
condition is implemented at the far-field boundary. The RANS
mesh has prisms cells near the airfoil and tetrahedra cells else-
where. The pitch axis is set to 0.25c, but the moment reference
point is at the leading edge unless stated otherwise. The overview
of the RANS mesh is shown in Fig. 7(b).

The static Euler and RANS calculations are shown in Fig. 7. Note
that Euler calculations are significantly faster than RANS calcula-
tions (on the order of five times faster for the meshes used in this
work). The simulations correspond to M¼0.3 and Re¼ 8:93� 106

in order to match experimental data from Ladson [145]. All RANS
simulations were performed using the SA turbulence model. Euler
and RANS predictions compare well with the experiments at low
angles of attack as shown in Fig. 7. The RANS model accurately
predicts the maximum lift, but the stall region predictions do not
match as well. The Euler model predicts the slopes of lift and pitch
moment fairly well up to moderate angles of attack. Differences
between the Euler predictions and experiments are observed at
high angles of attack due to the inviscid assumption, although the
Euler simulations show flow separation on the upper surface at
higher angles of attack resulting in a fall in lift slope. Cobalt in
Euler mode predicts the secondary boundary layer separation at
high angles of attack due to adverse pressure gradients, however,
these predictions are not accurate.

A dynamic test case (AGARD CT2) was also selected with
available experimental data from Landon [146]. The AGARD CT2
is a pitch forced oscillation with test conditions summarized in
Table 2. The CFD simulation of the RANS grid ran for three cycles
with a non-dimensional time-step of tn ¼ Vt=c¼ 0:01. The results
are shown and compared with experimental data in Fig. 7. Even
for this unsteady case, very good agreement was found, although

the angles of attack all fall within the linear range. These predic-
tions gave confidence in the ability of the current numerical
approach to predict unsteady aerodynamics.

5.2. SDM

The Standard Dynamics Model (SDM) is a generic fighter config-
uration based on the F-16 planform. The model includes a slender
strake-delta wing, horizontal and vertical stabilizers, ventral fins, and
a blocked off inlet. The three-view drawing is shown in Fig. 8. This
geometry has been tested extensively at various wind tunnel facilities
to collect aerodynamic data [147–149]. Note that slightly different
geometries were used in these previous studies.

A full-span geometry mesh is available as shown in Fig. 9. The
mesh has around 9 million points and 19.5 million cells. The wind
tunnel experiments [150] were used to validate the CFD predic-
tions at low speeds. The conditions of the tests were V¼110 m/s,
Re¼0.57 million and β¼51 for α¼0–901. All CFD simulations were
run at free-stream conditions consistent with flow conditions in
the wind tunnel tests. For flow solution, the RANS equations are
discretized by second-order spatial and temporal operators. The
turbulence models used are SA, SARC, and Menter's SST.

The static force and moment coefficients were compared with
experimental data in Fig. 10. The comparison showed that there
is a good agreement between the RANS predictions and the
measurements for angles of attack below 251. However, all

Table 2
Description of the AGARD CT2 test conditions.

Test conditions Values

Mach number, M 0.6
Mean incidence, α0 3.161
Pitch amplitude, αA 4.591
Reduced frequency, k 0.0811
Reynolds number, Re 4.8�106

Fig. 8. Standard dynamic model (SDM) layout [150].

Fig. 9. The SDM aircraft surface mesh model.
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turbulence models predicted a positive pitch moment slope at
zero degrees angle of attack, while experiments show a falling
trend at this angle. This was likely due to different inlet geometries
used in the wind tunnel models. At 51, a pair of vortices emanating
from the strake and wing leading-edge have formed as shown in

Fig. 10(a). These vortices do not exhibit breakdown and do not
interact over the airframe. The vortex formation causes an addi-
tional increase of lift and pitch moment coefficients. In experi-
mental tests, the sign of the pitch moment is reversed at this
angle, while CFD shows a jump in the moment rate of increase. No

Fig. 10. Static aerodynamic predictions at V0¼100 m/s and β¼5. (a) normal force coefficient; (b) pitch moment coefficient; (c) side force coefficient; (d) roll moment
coefficient; and (e) yaw moment coefficient.
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significant changes on lateral force and moment coefficients were
observed at this angle.

The SDM vortices grow in size and strength with increasing
angle of attack. At 101, the center of the wing vortex is shifted

laterally, while the shedding point is moved forward as shown in
Fig. 11(b). There are still no signs of vortex breakdown, and the
lateral moments slightly change due to the wing vortex move-
ment. Around 141, the two vortices wind around each other

Fig. 11. SDM flow-field visualization. The calculations are for a Mach number of 0.3 and β¼5 using SARC turbulence model. (a) α¼ 51; (b) α¼ 101; (c) α¼ 141; (d) α¼ 181;
(e) α¼ 221; and (f) α¼ 251.
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towards the trailing edge of the wing as shown in Fig. 11(c). With a
slight increase in angle of attack, the wing vortex appears to
breakdown quickly as shown in Fig. 11(d). The vortex breakdown
leads to a smaller lift rate of increase and a negative pitch moment
slope. The vortex breakdown phenomenon is asymmetric and
hence the lateral force and moment coefficients suddenly start to
change very rapidly. At 221 the strake vortex is also burst as shown
in Fig. 11(e). Finally, at 251 there is no sign of a wing vortex as
shown in Fig. 11(f).

5.3. SACCON UCAV

The SACCON geometry and experimental data were provided to
the partners participating in NATO RTO Task Group AVT-161
(Assessment of Stability and Control prediction Methods for NATO

Air and Sea Vehicles) [151]. The objective of this task group was to
evaluate CFD codes against wind tunnel results. The vehicle
planform and section profiles were defined in cooperation
between the German Aerospace Center (DLR) and EADS-MAS.
DLR adjusted the pre-design geometry for wind tunnel design
purposes which actually led to a higher overall thickness at the
root chord to provide enough space for the internal strain gauge
balance. The aircraft has a lambda wing planform with a leading
edge sweep angle of 531 as shown in Fig. 12. The root chord is
approximately 1 m, the wing span is 1.53 m, the reference chord is
0.48 m, and the reference area is 0.77 m2. The main sections of the
model are the fuselage, the wing section, and wing tip. The
configuration is defined by three different profiles at the root
section of the fuselage, two sections with the same profile at the
inner wing, forming the transition from the fuselage to wing and
the outer wing section. Finally, the outer wing section profile is
twisted by 51 around the leading edge to reduce the aerodynamic
loads and shift the onset of flow separation to higher angles of
attack.

The wind tunnel model was designed and manufactured at
NASA Langley Research Center (LaRC). The model was designed to
accommodate a belly sting mount for tests in the German-Dutch
Low Speed Wing Tunnel (DNW-NWB) in Braunschweig and the
14 ft�22 ft low speed wind tunnel at NASA LaRC [151,152]. The
high-angle-of-attack flow around SACCON is very complicated and
unsteady due to vortical flow formation, vortex interaction, and
vortex breakdown. SACCON also has complicated aerodynamic
characteristics at non-symmetric flow conditions. Some experi-
mental aerodynamic behavior of the SACCON configuration in the
lateral direction are shown in Fig. 13. The experimental results
[151] show that side force, yaw and roll moments are a nonlinear
function of angle of attack, most significantly above an angle of
attack of 101. Fig. 13 also shows that the angle of attack depen-
dency can be seen in the roll moment even at low angles of attack.
The lateral coefficients are nearly linear with side slip angle for
angles of attack below 151, and become increasingly dependent on
side-slip for angles of attack above 151 as shown in Fig. 13.

Two meshes are available, the first uses a belly mounted sting
present in the experiments and the second has no sting. The grid
including sting geometry is shown in Fig. 14. This grid containsFig. 12. The SACCON geometry [151].

Fig. 13. SACCON side force, roll moment, yaw moment versus angle of attack for different angles of side slip [151].
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around 4.5M points and 13M cells. The total run time of 1000
iterations for the model without sting geometry was 5 h using 128
processors. The SA with Rotation/curvature Correction (SARC)
[153] turbulence model was used for all CFD simulations. The
predicted static coefficients of lift, drag, and pitch moment were
compared with experiments in Fig. 14. The figures show that CFD
predictions closely follow the trends of experimental data up to
moderate angles of attack. The offsets in low angle of attack pitch
moment in the model have been shown to be due to the effects of
the belly sting mounting present in the experiments. For the ROM
studies, the mesh without sting geometry was used since it has
less grid points.

Some of the SACCON aerodynamic features are shown in Fig. 15.
Two emanating vortices from the wing tip and apex are present at
141 angle of attack (Fig. 15(a)). These vortices lead to a negative
pressure region on the upper wing surface, and hence augments the
lift force. As the angle of attack increases above 161, the onset point
of the outboard vortex starts to travel toward the wing apex due to

increasing adverse pressure gradients. At 19.51 angle of attack the
vortices are already interacting as shown in Fig. 15(b). Further
increasing of angle of attack causes the inboard vortex to start to
break down (Fig. 15(c)). At higher angles of attack the tip vortex also
breaks down. The interaction of the vortices produces a strong
recirculation zone over the upper wing (Fig. 15(d)) and results in
wing stall and the aerodynamic center backward movement.

For generation of 6DoF SACCON maneuvers, the wind tunnel
model was scaled up to fit the characteristics of a real aircraft.
Initially, estimations of the mass and moments of inertia were
made, through work carried out in the NATO group, based on the
Northrop YB-46 aircraft. Table 3 summarizes the SACCON geome-
try parameters and mass and moments of inertia.

5.4. X-31

The X-31 aircraft is considered in this paper as well. The aircraft
geometry and wind tunnel data were again provided to the

Fig. 14. The SACCON grid and static validations. The static conditions are M1 ¼ 0:144 and Re¼ 1:61� 106. Experiments are obtained from Cummings and Schütte [151] and
shownwith filled circles. The solid lines with delta markers show the Cobalt predictions for a grid without sting geometry. The lines with square marker show predictions of
a grid including sting geometry. Turbulence model is SARC. (a) SACCON grid; (b) static lift coefficient; (c) static drag coefficient; and (d) static pitching moment coefficient.
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participants in NATO RTO Task Group AVT-161. The vehicle is a
super-maneuverable fighter which was built by the United States
and West Germany in the 1990s. The test aircraft has been a
subject of extensive flight and wind tunnel tests (see for example
[154–157]), as well as CFD simulations (an example is the work of
Schütte et al. [11]). A three-view drawing of the vehicle is shown
in Fig. 16. The aircraft has a fuselage length of 13.21 m, a canard,
and a double delta wing with total wing span of 7.26 m. The inner
delta wing has a sweep angle of 571 and the outer sweep is 451.
The inner wing sweep places the wing behind the supersonic
shock wave, while the outer one improves the vehicle stability and
control [158]. The canard is a cropped delta wing with a sweep
angle of 451. Additional characteristics of the model are the inner

and outer leading edge flaps, the trailing edge flaps, the front wing,
and rear fuselage strakes.

The mesh overview is shown in Fig. 17. The grid is a symmetric
configuration and contains 4.9 million points and 11.7 million cells.
Three boundary conditions were imposed to the surfaces: a far-
field, symmetry, and solid wall. The low-speed experiments were
made available by the DLR, German Aerospace Center [157]. The
wind tunnel model has a closed inlet and is fitted with moving lift
and control surfaces. The experiments are composed of two

Fig. 15. The SACCON vortical flows using SA turbulence model. The conditions are M1 ¼ 0:144 and Re¼ 1:61� 106. The vortices core lines are extracted and shown by black
lines. For case (d), the flow separations lines are shown by red lines. (a) α¼ 141; (b) α¼ 19:51; (c) α¼ 20:51; and (d) α¼ 231. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this paper.)

Table 3
Geometry parameters and mass/inertias of SACCON
flyable model.

Mean aerodynamic chord, c (m) 5.011
Wing area, S (m2) 55.0
Wing span, b (m) 13.0
Ixx (kg m2) 8014
Iyy (kg m2) 6564
Izz (kg m2) 8937
Maximum take-off weight, MTWO

(kg)
2000

Fig. 16. The X-31 aircraft geometry.
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setups. The first setup uses a belly mounted sting attached to the
model directly under the main wing. This setup allows six degree
of freedom motions. The second setup uses an aft mounted sting
connected to an arm in the wind tunnel. The values of lift, drag,
and pitch moment from the second setup were used to validate

CFD predictions. Four turbulence models were tested: SA, SARC,
SST, and SARC with Detached Eddy Simulation (SARC-DES). Fig. 18
compares the lift, drag, and pitch moment coefficients obtained
from each turbulence model with the available measurements.
All these models yielded similar predictions at low angles of

Fig. 17. The X-31 aircraft mesh model. (a) Half-Model Mesh and (b) Surface mesh around LEX and canard.

Fig. 18. The X-31 static loads validations. The static conditions are: M¼0.18 and Re¼ 2� 106. (a) lift coefficient; (b) drag coefficient; (c) pitching moment coefficient.
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attack, but they resulted in a wide spread of predictions at
moderate to high angles. For angles between α¼15–231 SARC-
DES and SST models performed quite well compared to SA and
SARC. DES and SST accurately predicted unsteady separated flows
occurring at these angles, but for angles above 231 all models
failed to predict accurately the massively separated flows.

Some features of aerodynamic characteristics from the SARC-
DES turbulence model predictions are explained. There is an
emanating vortex from the canard tip at small angles of attack.
This vortex is the source of the small non-linearity in the pitch

moment at low angles of attack. As the angle of attack is increased,
the canard vortex becomes stronger, resulting in a negative
pressure on the upper surface and forward movement of the
aerodynamic center. Therefore, the pitch moment slope suddenly
increases from the slope value at zero degrees angle of attack. This
vortex is shown in Fig. 19(a) for 101 angle of attack. Around an
angle of attack of 141, the canard vortex starts to breakdown and
the wing vortex is formed as shown in Fig. 19(b). The wing vortex
helps to further forward movement of aerodynamic center and
increase of pitch moment. At 181 angle of attack, the canard vortex

Fig. 19. The X-31 vortical flows using SARC-DES turbulence model. The conditions are M¼0.18 and Re¼ 2� 106. (a) α¼ 101; (b) α¼ 141; (c) α¼ 181; (d) α¼ 201; (e) α¼ 221;
and (f) α¼ 251.
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breakdown point is nearly moved to the leading edge and then the
wing vortex starts to breakdown as shown in Fig. 19(c). This results
in an aft movement of the aerodynamic center and a change in the
pitch moment slope sign. The wing vortex breakdown point moves

towards the leading edge by increasing angle of attack (Fig. 19(d),
(e)). The canard vortex is fully separated at these angles. As the
vortex breakdown point becomes close to the wing leading edge
(Fig. 19(f)), the pitch moment starts to rise again.

Fig. 20. The NACA 0012 lift and pitch moment response functions at M¼0.3 and Re¼ 5:93� 106. (a) linear CLα , q¼0; (b) linear CLq , α¼0; (c) CLα at different α, q¼0; (d) CLq at
different α; (e) Cmα at different α, q¼0; (f) Cmq at different α.
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6. Analysis

The models are evaluated by comparing the predictions with
time-accurate CFD solutions which are labeled “Time-Marching” in
the plots. The prediction capability of ROMs is reviewed first for
the airfoil, SDM, and SACCON test cases. These models are then
tested for a pitching motion of the X-31 configuration to permit
direct comparison of costs and errors. In this work, the error norm
was defined as

E¼∑N
i ¼ 0jycfd½i��yrom½i�j

ycfdmax�ycfdmin

� 100 ð45Þ

where N is the total number of time-steps used in the CFD
solutions, and the superscripts cfd and rom indicate, respectively,
the time-marching and the model predictions .

6.1. Airfoil aerodynamics modeling

All airfoil calculations were run on 10 cores with 2.3 GHz core
speed. The ROMs reviewed for the airfoil predict only lift and pitch
moment coefficients and were used at a fixed Mach number
similar to the one used in the training maneuver/response
function calculations.

6.1.1. Models for M¼0.3
The RANS grid with the SA turbulence model was used for the

response calculations of the NACA 0012 airfoil. The step responses
of the airfoil are shown in Fig. 20 for M¼0.3. These simulations
were run for 0.125 s with a time step of 5� 10�5 s. Fig. 20(a) and
(b) shows that the lift has a peak at s¼0 followed by a rapid falling
trend. The lift again builds up and asymptotically reaches the
steady-state value at the final time. The initial peak can be
explained based on the energy of acoustic wave systems created
by the initial perturbation [89,106]. Fig. 20 shows that the lift
values at the initial and final times of the response are favorably
comparable with the analytical results of Lomax, Wagner, and
Leishman. Fig. 20 also shows the effects of angle of attack on
response functions. The results show that initial values of the
response functions are invariant with the angle of attack but the
transient trend and steady state values change depending on the
angle of attack.

A linear ROM was created using Eq. (23) and indicial responses
at zero degrees angle of attack. This model was then used for the
response prediction of two pitching motions with reduced fre-
quencies of k¼0.077 and 0.307, a mean incidence of zero degrees,
and an amplitude of one degree. The results of the linear model
are compared with the time-marching solutions in Fig. 21. The
comparisons show that the linear ROM provides very good
agreement for these slow and fast motions. The error norm values

Fig. 21. The linear indicial response ROM model for the airfoil, M¼0.3 and Re¼ 5:93� 106. (a) pitch oscillation with k¼0.077; (b) pitch oscillation with k¼0.077; (c) pitch
oscillation with k¼0.307; and (d) pitch oscillation with k¼0.307.
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for the lift and pitch moment coefficients are around 0.9% and
2.2%, respectively.

A nonlinear ROM was also created using Eq. (24) and nonlinear
response functions calculated at M¼0.3. Fig. 22(a) and (b) compares
the linear and nonlinear ROM predictions for a ramp increase of

angle of attack from 1.51 to 151 with a rate of 10 deg/s. The grid is
undergoing only a translational motion, so the second terms in Eqs.
(23) and (24) are zero. Notice that the forces and moments acting on
the airfoil during translation are different from the static values. The
flow change is not as fast as the angle of attack change and hence

Fig. 22. The nonlinear indicial response ROM model for NACA 0012, M¼0.3 and Re¼ 5:93� 106. The moment reference point in (b) is on the quarter chord point. (a) ramp
motionwith rate of 10 deg/s; (b) ramp motionwith rate of 10 deg/s; (c) pitch oscillation with k¼0.077; (d) pitch oscillation with k¼0.077; (e) pitch oscillation with k¼0.307;
and (f) pitch oscillation with k¼0.307.
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the ramp motion underestimates the static coefficients. The results
show that for low angles of attack both linear and nonlinear ROMs
are in good agreement with values from the time-marching simula-
tion. For large angles of attack, the nonlinear model closely follows
the time-marching solution, but the linear model is off since the
model formulation is valid in linear regimes. The error norm values
of the linear model are 2.82% and 5.0% for the lift and pitch moment
coefficients. These errors drop to 1.4% and 2.2% using the
nonlinear model.

Fig. 22(c)–(f) also shows two pitch oscillation cases with
reduced frequencies of k¼0.077 and 0.307. Both motions start
from α¼ 101 and have an amplitude of 41. Fig. 22(c)–(f) shows that
the nonlinear ROM predictions agree well with time-marching
simulation data. The error norm values are around 2.3% and 2.7%
for the lift and pitch moment coefficients, respectively.

Some of the model strengths and weaknesses are now briefly
highlighted. An advantage of the indicial response model is that
responses are calculated as a function of time and include the
effects of _α and _q, therefore they can be used for any frequency of
interest. These models can also predict the initial transient
behavior seen in CFD solutions. However, response functions do
not work for the full range of Mach numbers. For aerodynamic
modeling of large amplitude motions, two types of problems were
also reported [159]: (1) a large number of simulations is required

to model a highly nonlinear motion, therefore, the reduced order
model becomes quiet expensive to generate, and (2) the second
problem is related to the stability of response type CFD calcula-
tions at large angles of attack. Fig. 23 shows the effects of angle of
attack on the responses of the NACA 0012 airfoil at M¼0.3. Fig. 23
shows that as the angle of attack reaches the stall angle, small
oscillations are found in the response solutions. For angles of
attack beyond the stall angle, the oscillations become large and
persist for a long time. This behavior makes the nonlinear indicial
functions infeasible to model motions at large incidence angles.

In terms of computational cost, the linear and nonlinear models
required about 0.6 and 6.0 h of CPU time, respectively. The non-
linear model requires response calculations at different angles of
attack and hence comes with more computational cost. However,
once these models are constructed, they can be used to predict
airfoil responses to a wide range of pitching and plunging motions
in order of a few seconds. In comparison to model costs, each
time-accurate simulation (full-order model) costs around 1.8 h
of CPU.

RBF neural networks were also used for aerodynamic modeling
of the NACA 0012 airfoil [36]. The networks used had a hidden
radial basis layer with a Gaussian transfer function. All training
data were generated using CFD with either the Euler or RANS
equations. Six training datasets were defined to find a mapping

Fig. 23. The NACA 0012 airfoil angle of attack response functions. In these
simulations M¼0.3 and Re¼ 5:93� 106.

Fig. 24. The plunge and pitch training maneuvers for airfoil Euler simulations. (a) plunge training motions and (b) pitch training motions.

Fig. 25. RBF neural network training performance. The y-axis displays root mean
squared error and the x-axis shows number of iterations.
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Fig. 26. RBF network predictions of testing motions; simulations correspond to an Euler mesh and ran at M¼0.3. (a) plunge oscillation with f¼1 Hz; (b) ramp motion with
rate of 10 deg/s; (c) plunge oscillation with f¼0.5 Hz; and (d) pitch oscillation with f¼2.5 Hz.

Fig. 27. Training data for the airfoil RANS simulations; M¼0.3. (a) pitching motion and (b) ramp motion.

Fig. 28. RBFNN predictions of the airfoil pitching motion using both Euler and RANS equations; M¼0.3. (a) normal force coefficient and (b) pitch moment coefficient.
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Fig. 29. NACA 0012: training maneuver for the generation of a discrete-time multi-input Volterra model (M ¼ 0:764, α0 ¼ 0:01 and k¼ 0:10); in (a), variation of angle of
attack with time; in (b), “Model” refers to the discrete-time multi-input Volterra model. (a) angle of attack and (b) pitch moment coefficient.

Fig. 30. NACA 0012: predictions of pitching moment dynamic dependence
(M¼0.764, α0 ¼ 0:01, αA ¼ 8:51, and k¼0.10); “Model” refers to the discrete-time
multi-input Volterra model.

Fig. 31. NACA 0012: carpet plot of the pitching moment coefficient (M¼0.764,
α0 ¼ 0:01, and k¼0.10); large spheres indicate the 4 CFD solutions used to construct
the SBRF model.

Fig. 32. NACA 0012: predictions of pitching moment dynamic dependence
(M¼0.764, α0 ¼ 0:01, αA ¼ 8:51, and k¼0.10); “Model” refers to the surrogate-based
recurrence-framework.

Fig. 33. Design samples.
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Fig. 34. Nonlinear lift and pitch moment indicial solutions due to angle of attack for M¼0.3 and 0.6. (a) nonlinear lift responses at M¼0.3; (b) nonlinear lift responses at
M¼0.6; (c) nonlinear pitch moment responses at M¼0.3; (d) nonlinear pitch moment responses at M¼0.6.

Fig. 35. Lift and pitch moment indicial solutions due to pitch rate for α¼ 01. The pitch axis and moment reference point are located at 35% MAC. (a) Pitch rate lift indicial
functions and (b) Pitch rate pitch moment indicial functions.
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between aerodynamic coefficients with motion variables at a fixed
Mach number of 0.3. These motions are linear chirp type and have
an initial frequency of 1 Hz but started at different angles of attack
as shown in Fig. 24. The starting angles of attack are �51, 01, and
51 to include the effects of steady-state conditions into the
pitching and plunging motions.

All six training motions were first simulated using the Euler
equations. The CFD calculations started from a steady solution and
ran for three seconds of physical time with a time step size of
5� 10�5 s. This gives a total computational cost equivalent to that
of 240 Euler steady-state calculations or 17 CPU hours; this is
much higher than the cost of response functions because training
motions take a longer time to complete than indicial responses.
Euler calculations are five times faster than calculations using the
RANS grid. Therefore, the cost of simulating all six training
motions using the Euler approach is equivalent to that of only 48
RANS steady-state calculations.

The reported normal force and pitch moment coefficients of
training maneuvers were re-arranged according to Eq. (30) and
then fed to the RBF neural network for training with different
values of n and m and with a performance error threshold of
1� 10�6. All networks computed and converged to the threshold
error as shown in Fig. 25. The results showed that using m¼2 and
n¼4 in Eq. (30) is sufficient for modeling the studied motions. The
costs to train the networks and that of executing the networks for
new maneuvers were around 88 s and 17 s, respectively.

Once the networks were trained, they were used to predict the
aerodynamic loads of new maneuvers again simulated by the
Euler equations. The predicted normal force and pitch moment of
these maneuvers are compared with CFD data in Fig. 26. Fig. 26
(a) shows the airfoil responses to a plunge oscillation with a
frequency of 1 Hz started at zero degrees angle of attack. The
results show that the ROM predictions match well with the time-
marching calculations. The error norm values for normal force and
pitch moment are 0.75% and 5%, respectively. The cost of simulat-
ing this motion in a time-marching fashion is around 0.36
CPU hours.

Fig. 26(b) compares the ROM predictions for a ramp increase of
angle of attack with a rate of 10 deg/s started at zero degrees angle
of attack. The results show that ROM predictions agree well with
the CFD prediction (the error norm values are 0.34% and 5.45% for
the normal force and pitch moment coefficients, respectively).
Also, two pitch oscillation motions with frequencies of f¼0.5 Hz
and f¼2.5 Hz were considered. The low-frequency motion predic-
tions are compared with the CFD data in Fig. 26(c). Again a good
match is found (the normal force and pitch moment error norms
are 0.46% and 5.98%). Likewise, Fig. 26(d) shows that the ROM
predictions closely match with the time-marching simulations of
the motion with f¼2.5 Hz.

The development of a ROM from RANS/Euler was also investi-
gated by Ghoreyshi et al. [36]. For network training purposes,
these data are also called primary/secondary or expensive/cheap
data. The cheap data are assumed to provide information at least
about the trend of the target function, whereas the expensive
calculations give quantitative information. To illustrate the
approach the NACA 0012 airfoil was used again. The time-
marching Euler predictions of all six training sets described in
Fig. 24 are considered as cheap data. It is assumed that these
predictions had similar trends to the RANS predictions, but with
different values. The new RBF model tries to correct these trends
by using much less expensive data.

The expensive (or RANS) calculations were run only for two
training sets. The first set is a chirp-pitch that runs for one second
of physical time as shown in Fig. 27(a). The second set is a ramp
motion with a rate of 10 deg/s, starting at �101 and progressing
for two seconds of physical time as shown in Fig. 27(b). Both

motions have a sweep of angle of attack from the low to high
angles, and therefore are found very helpful to learn the differ-
ences between Euler and RANS predictions. Both training sets
were simulated using time-marching RANS equations and the SA
turbulence model. Likewise for the Euler predictions a time step of
5�10�5 s was used. This results in a computational cost equiva-
lent to that of 40 RANS steady-state calculations and a total cost
(both Euler and RANS) of 88 RANS steady-state calculations. Note
that using RANS for time-marching simulations of all six training
sets is equivalent to that of 240 RANS steady-state calculations. In
this sense, a ROM generated using both Euler and RANS calcula-
tions is 63% cheaper than a ROM generated using the RANS
calculations of six training maneuvers.

The RBFNN was trained for these maneuvers using both RANS
and Euler evaluations and then was tested for new maneuvers
simulated using RANS equations. A pitch oscillation was used to
demonstrate the network performance. The motion is a constant
frequency type with f¼0.5 Hz started at zero degrees angle of
attack. The unsteady normal force and pitch moment coefficients
were obtained using simulations of unsteady RANS equations and
are shown in Fig. 28(a) and (b). Fig. 28(a) and (b) shows that the
output of a network using both Euler and RANS training data
match well with time-marching values. Such a network has similar
trends as predicted by the network trained from Euler data and
then corrects them. The network using only Euler data match
time-marching solutions at low angles of attack, but overestimates
the values at high angles due to the inviscid assumption. Fig. 28
(a) and (b) shows that using only RANS data of two training sets
does not help much to approximate the time-marching values,
since these maneuvers are short and do not properly cover the
frequency and starting angle of attack space.

In comparison to response function models, a training maneu-
ver that even partially covers the input space will take much
longer to simulate in CFD than response functions. RBF based
model predictions are also influenced by the training maneuver
type and the range of frequency and angle of attack used in the
training maneuver as well as the network settings. On the other
hand, the RBF based models can be applied for aerodynamic loads
prediction in the post-stall regime, assuming an appropriate
maneuver was used in the network training.

Fig. 36. Validation of Cmq values calculated from pitch-rate indicial functions.
Experimental data are from Da Ronch et al. [161].
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6.1.2. Models for M¼0.764
Models based on Volterra theory and SBRF were also used for

aerodynamic modeling of the NACA 0012 airfoil. One problem to
present is the pitch moment response of the airfoil to a pitching
motion at M¼0.764 for α¼ 8:51 sin ðωtÞ with k¼0.1.

For the identification of the Volterra kernels, Da Ronch et al. [32]
used a CFD-generated training maneuver as the data source. The
variation of the maneuver angle of attack with time is shown in
Fig. 29(a). The Mach number of this maneuver was set to 0.764
similar to the target motion and the reduced frequency was 0.1.

Fig. 37. ROM prediction of plunging motions.

M. Ghoreyshi et al. / Progress in Aerospace Sciences 71 (2014) 167–217 195



The mean angle of attack was zero, but the amplitude changes in
time; the maximum angle of attack in the maneuver is 141 to excite
nonlinear aerodynamics due to shock-induced separation. The pitch
moment coefficient of this maneuver computed using the RANS grid

is illustrated in Fig. 29(b). The Volterra model is also included in the
same figure for comparison with the training signal used in the
identification process. The overall agreement is reasonable. However,
deviations can be observed at both ends of the time interval.

Fig. 38. ROM prediction of pitching motions.
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As the airfoil is symmetric and oscillates around zero degrees
mean angle of attack, the resulting aerodynamic loads are odd
functions of the angle of attack change. As a result, any odd
kernel was neglected in the identification process. The Volterra

model used in the results includes kernels up to third order
as follows:

Hα
1 H _α

1 H €α
1

Hα; _α
2 H _α ; €α

2

Hα; _α ; _α
3 H _α ; _α ; €α

3 Hα;α; €α
3 ð46Þ

The upper bound of the integer k in Eq. (37), which indicates
the number of previous time-steps to account for, was set to one
for the terms Hα

1 and H _α
1; for the other kernels, it was set to zero.

The effect of including more terms in the model was assessed
during the identification of the Volterra model, and in the
subsequent comparison for the target maneuver.

Fig. 30 conveys the unsteady pitch moment coefficient for the
target maneuver. The CFD solution exhibits nonlinear characteristics
at the higher angles of attack. The Volterra model including the
kernels shown in Eq. (46) is illustrated in the same figure for
comparison. Including first-order kernels, the error norm in the
prediction of the target maneuver was 6.78%. Second-order kernels
were then added and the Volterra model deviated by 6.87% from the
CFD solution. By introducing third-order kernels (this model is
shown in Fig. 30), the error norm slightly drops to 6.18%. Despite
using kernels up to third order, the agreement is not excellent.
The overall fit of the model is reasonable, but there is no sign of the
prediction of any non-linear features.Fig. 39. Design space samples.

Fig. 40. The lift and pitch moment indicial functions. (a) linear CLα functions; (b) linear Cmα functions; (c) nonlinear CLα functions at M¼0.3; and (d) nonlinear Cmα functions
at M¼0.3.
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The mediocre performance of the Volterra model may be
attributable to two aspects. To obtain a robust predictive model,
in combination with kernels of the second and third order, the
influence of the previous time-history on the current time instant
was limited. Second, the training case considered may not be
optimal for the model identification.

An SBRF model was also constructed to predict the pitch
moment response of similar target maneuvers. This model was
created from CFD solutions corresponding to 30 different combina-
tions of αA, constrained to vary between 01 and 101. With an
increment in αA of 0.251, the parameter space was initially covered
for 75% of all the possible combinations. Fig. 31 depicts the carpet
plot of the pitch moment coefficient for each value of the parameter
αA obtained using the SBRF model. The axis “Iteration” indicates the
time evolution through the last cycle of the simulations.

Next, the number of initial training CFD solutions was itera-
tively reduced to focus on the predictive capabilities of the model.

Four CFD solutions were eventually retained, and these are
included as large spheres in Fig. 31. Note that two training cases
are located at the borders of the parameter space to avoid
extrapolation. The remaining two cases were automatically
sampled by the algorithm described in reference [117]. Note also
that there is no close proximity of the four training cases to the
amplitude of 8.51 used in the target maneuver.

The ROM predictions are evaluated for the target maneuver with
a Mach number of 0.764. The comparisons are presented in Fig. 32
which shows the reduced-order model closely approximates the
reference solution (the error norm is 1.7%), featuring very similar
nonlinear characteristics at higher angles as well. Note that this
model can only predict responses to motion at a constant reduced
frequency of k¼0.1. The number of training maneuvers, and there-
fore the computational cost of this model, will significantly increase
for aerodynamic modeling throughout the angle of attack/Mach
number/frequency space.

Fig. 41. The side-force, roll and yaw moments indicial functions. (a) CYβ functions at M¼0.1; (b) CYβ functions at M¼0.3; (c) CYβ functions at M¼0.5; (d) Cnβ functions at
M¼0.1; (e) Cnβ functions at M¼0.3; (f) Cnβ functions at M¼0.5; (g) Clβ functions at M¼0.1; (h) Clβ functions at M¼0.3; and (i) Clβ functions at M¼0.5.
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6.2. SDM aerodynamics modeling

A ROM based on an indicial response function, along with a time-
dependent surrogate approach, is reviewed for the SDM aerodynamic
modeling in the angle of attack/Mach number/frequency space.

The indicial response functions of the SDM aircraft are inter-
polated from some available samples in the angle-of-attack and
free-stream Mach number space. Note that these functions only
need to have dependency on angle-of-attack and Mach number,
and once they have been calculated they could be used to predict

Fig. 42. The lift and pitch moment indicial functions with a unit step change of normalized pitch rate at different Mach numbers.

Fig. 43. The lateral coefficients with a unit step change in the normalized roll rate.
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the aerodynamic response to any frequency of interest. For
example the samples could be generated using the methods of
factorial designs, Latin hypercube sampling, low discrepancy
sequences, or designs based on statistical optimality criteria
(A-, D- and G-optimal designs) [160]. Factorial designs are extre-
mely simple to construct and have been used in this work. The
SDM motions considered encompass α and M values in the range
of [�101, 101] and [0.3, 0.7], respectively. Assuming symmetrical
flow solutions with respect to the angle of attack, the indicial
functions are only calculated for positive angles of attack.

A set of samples including 50 points is defined on the α and M
space using factorial design; these points are shown in Fig. 33. The
indicial functions are calculated using CFD with the grid motion
approach for each sample condition. All these calculations started
from a steady-state solution such that the Mach number in the
steady-state simulations corresponds to each sample Mach num-
ber. The step function calculations are second order in time with a
non-dimensional time step of Δtn ¼Δt:V=c¼ 0:01. The calculated
indicial functions due to angle of attack are shown in Fig. 34 for
M¼0.3 and M¼0.6. Fig. 34(a) and (b) shows that the indicial lift
has a peak at s¼0 followed by a rapidly falling trend. The lift again
builds up and asymptotically reaches the steady-state value. The
pitch moment also has a negative peak at s¼0 as shown in Fig. 34
(c) and (d). Fig. 34 shows that the initial values of indicial functions
are invariant with angle of attack, but the intermediate trend and
steady-state values change, depending on the angle of attack.

Although, the final values of indicial lift are nearly unchanged
for angles of attack below 51, but the pitch moment final values
are different even at small angles of attack due to vortices on
the wing.

The effects of Mach number on the lift and pitch moment
indicial functions with respect to pitch rate are shown in Fig. 35.
Fig. 35 shows that increasing Mach number results in the increase
of steady-state CLq and the decrease of steady-state Cmq (the
so-called pitch damping derivative). Fig. 36 compares the steady-
state Cmq values calculated from the CFD code with the out-of-
phase components of pitch moment derivative, i.e. CmqþCm _α

measured at different Mach numbers and zero degrees angle
of attack; these experimental data are detailed by Da Ronch
et al. [161]. Like the static predictions, the CFD values slightly
underestimate the experimental pitch moment data, although
the CFD predictions do not include the effects of the rate of
change of angle of attack, i.e. Cm _α . Cmq is the largest factor in
the sum CmqþCm _α , typically accounting for 90% of the sum.
Again, the underestimation of experimental data is likely due to
different inlet geometries in the wind-tunnel and the SDM
geometry used in this work. Note that the indicial function
approach allows the direct calculation of pitch damping deriva-
tives but extraction of dynamic derivatives from harmonic motions
results in the in-phase and out-of-phase components [161] and
additional work required to separate each derivative from these
components.

Fig. 44. The lateral coefficients with a unit step change in the normalized yaw rate.
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A nonlinear ROM based on indicial response theory is created
along with a time-dependent surrogate model to determine the
terms in Eq. (24) at each time step. The validity of the ROM is
tested for several arbitrary pitching and plunging motions. These
motions start from different steady-state conditions (not being
used during ROM creation) and run for different amplitudes and
frequencies. The ROM predictions are compared with time-
accurate CFD simulations in Figs. 37 and 38. Figs. 37 and 38 show
that the ROM lift and pitch moment predictions agree well with
the time-marching simulation values. Small discrepancies are
found in the pitch moment predictions at negative angles of
attack. This is likely due to the fact that SDM pitch moment is
not symmetric with angle of attack and hence the response

functions generated at positive angles cannot predict the slope
changes correctly. Note that the cost of ROM creation and the
average cost of generating each time-marching simulation are
around 72,500 and 5280 CPU hours using 128 processors
(2.7 GHz), respectively. However, the model cost is upfront and
once the model is created it can rapidly predict the aerodynamic
responses of many motions, all defined within the input
space range.

6.3. SACCON aerodynamics modeling

Most previous reduced order aerodynamic modeling efforts
have been limited to longitudinal motions with the angle of attack

Fig. 45. Half lazy-8 maneuver. (a) ground trajectory; (b) flight velocity; (c) aero angles; and (d) Euler angles; and (e) flight trajectory.
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and pitch rate as input variables. Recently, models based on
indicial functions have been used for aerodynamic prediction of
both longitudinal and lateral forces and moments [112]. Here,
these models are reviewed for prediction of the SACCON aero-

dynamic forces/moments during 6DoF maneuvers in the subsonic
speed range.

An optimal control approach [162,163] was used to generate
6DoF maneuvers for the SACCON with the feasible solutions based

Fig. 46. Immelmann turn maneuver. (a) flight altitude; (b) flight velocity; (c) aero angles; (d) Euler angles; and (e) flight trajectory.
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on the vehicle control and state constraints. The input angle of
attack of maneuvers is in the range of �101 to 101 with a Mach
number range of 0.1–0.5. The side-slip angle also ranges from �51
to 51. The side-force, yaw and roll moments are nearly linear with

side-slip for small values of side-slip and angles of attack below
151 as shown in Fig. 13. However, the generation of response
functions in the defined input space using CFD is still expensive
and makes the creation of a ROM very time consuming. A time-

Fig. 47. Aerodynamic modeling of half lazy-8 maneuver. (a) lift coefficient; (b) pitch moment coefficient; (c) side force coefficient; (d) roll moment coefficient; and (e) yaw
moment coefficient.
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dependent surrogate model is presented to model SACCON
response functions for a new flight condition from some available
(observed) responses.

For surrogate modeling of response functions, a set of samples
including 33 points is defined on the α andM space using full factorial
design. Also, it is assumed that the aerodynamic forces and moments

are symmetric about zero degrees angle of attack and hence only the
angles between zero and ten degrees are considered for response
function calculations. This assumption is not entirely correct but it aids
in reducing the computational cost of generating response functions.
The sample points are uniformly spaced over positive α values for
Mach numbers of 0.1, 0.3, and 0.5 and are shown in Fig. 39.

Fig. 48. Aerodynamic modeling of Immelmann turn maneuver. (a) lift coefficient; (b) pitch moment coefficient; (c) side force coefficient; (d) roll moment coefficient and
(e) yaw moment coefficient.

M. Ghoreyshi et al. / Progress in Aerospace Sciences 71 (2014) 167–217204



All response computations started from a steady-state solution
and then advanced in time using second-order temporal accuracy.
The motion files were generated for step changes in aircraft
forcing parameters (angle of attack, side-slip angle, and angular
rates). These files define the rotations and displacements at
discrete time instants and Cobalt then interpolates motion data
using cubic-splines and moves the grid for each computational
time step. The grid undergoes only translation motion for α and β
responses, where the relative velocity between grid and flow at
each time instant defines the angle of attack and side-slip. For
angular rate responses, the motions start from a steady-state
solution with zero degrees angle of attack and side-slip angle.
The grid then rotates and translates simultaneously. The rotation
corresponds to a unit step change in the angular rate, while the
translation motion is used in order to keep angles of attack and
side-slip zero during rotations.

In angle of attack response simulations the solutions start from
a steady-state condition at an angle of attack of αi and a Mach
number ofMi, and then performs a small step in the angle of attack
for all t40. In these calculations, Mi and αi values correspond to
the samples shown in Fig 39, and the side-slip angle is zero
degrees at all times and the grid does not rotate at any time. The
response functions are then computed by taking the differences
between time-varying forces and moments occurring after the
step and the steady-state solution at α¼ αi degrees, and dividing
them by the magnitude of the step ðΔαÞ. For a weakly nonlinear
system, the response will be nearly independent of the step
magnitude (assuming that αiþΔαrαiþ1). The step value used
was a unit step.

The lift and pitch moment indicial responses to a unit step
change in the angle of attack from α¼ 0 are shown in Fig. 40
(a) and (b) for Mach numbers of 0.1, 0.3, and 0.5. The lift and pitch
moment are plotted against the nondimensional time s¼ 2Vt=c.
Fig. 40(a) shows that the lift responses have a peak at s¼0.
Likewise, the pitch moment predicts a negative peak at this time
as shown in Fig. 40(b). As the steady flow around the vehicle is
disturbed by the grid motion, a compression wave and an expan-
sion wave are formed on the lower and upper surfaces of the
vehicle that cause a sharp peak in the responses [27]. As the
response time progresses, the waves begin to move away from the
vehicle, the lift starts to fall, and the pitch moment starts to
increase, and then the responses asymptotically reach the steady-
state values. Note that final time responses match with the static
data slopes at zero angle of attack. Fig. 40(a) and (b) also shows
that the initial peak becomes smaller for compressible flow. An
explanation is given by Leishman [106]; this is due to the
propagation of pressure disturbances at the speed of sound,
compared to the incompressible case, where the disturbances
propagate at infinite speed.

Fig. 40(c) and (d) shows the lift and pitch moment responses at
different angles of attack at Mach number of 0.3. These figures
show that the initial values of responses are invariant with angle
of attack, but the transient trend and steady state values change
depending on the angle of attack. The changes in the indicial
functions are small since the lift and pitch moment are in the
nearly linear regime of angle of attack.

The lateral loads response to a unit step change in the side slip
angle at different angles of attack are shown in Fig. 41 for Mach
numbers of 0.1, 0.3, and 0.5. In these simulations, the solution
starts from a steady-state condition at zero degrees side slip angle
and an angle of attack of αi at a Mach number of Mi, and then
iterates such that the side slip angle is held constant to one degree
and angle of attack is held constant to αi for all t40, where Mi and
αi correspond to the samples shown in Fig. 39. Likewise, for the lift
and pitch moment, the initial peaks in lateral responses become
smaller for compressible flow. Fig. 41 shows that side-force

responses ðCyβÞ remain almost unchanged with the changes in
the angle of attack for the range of angles studied. This figure
shows that the yaw moment responses ðCnβÞ slightly change with
the changes in the angle of attack, but significant differences are
found for the roll moment. The differences become more apparent
as the Mach number increases.

Typically, the angle of attack effects are negligible for the
responses due to the angular rates at low to moderate angles of
attacks. Fig. 42(a) and (b) shows the lift and pitch moment
responses respectively with a unit step change in pitch rate for
Mach numbers of 0.1, 0.3, and 0.5. Again there is an initial jump in
lift as the grid starts to rotate, and the value decreases as Mach
number increases. The lift response starts to fall a short time after
initial excitation and then it asymptotically reaches a steady-state
value, the so-called pitch dynamic derivative. Fig. 42(a) and
(b) shows that increasing Mach number results in the slight
decrease of the lift and pitch damping derivatives. These calcula-
tions, along with a time-dependent surrogate model, were used to
estimate the functions of CLqðt;MÞ and Cmqðt;MÞ in the ROM
equations. Also, the indicial functions with respect to roll and
yaw rates are shown in Figs. 43 and 44, respectively. These
calculations, along with a time-dependent surrogate model, were
used to estimate the functions of CYpðt;MÞ, Clpðt;MÞ, Cnpðt;MÞ,
CYrðt;MÞ, Clrðt;MÞ, and Cnrðt;MÞ in the ROM equations.

The response modeling equations were used for prediction of
two SACCON maneuvers: a half Lazy-8 [164] and an Immelmann
turn [165]. In both maneuvers, the aircraft enters and terminates
the maneuver from a straight and level condition. The maneuvers
were generated using the DIDO code [166] to minimize the final
maneuver time subject to vehicle aerodynamics, as well as mass
properties, state, and control constraints. The angle of attack and
side slip angles are limited to ½�101;101� while the maximum
Mach number is 0.5. Fig. 45 shows that the Lazy-8 maneuver
makes a 1801 turn. The airplane starts a climb steeply to reduce

Fig. 49. Surface pressure solutions during Lazy-8 and Immelmann Turn maneu-
vers: (a) half Lazy-8 and (b) Immelmann turn.
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flight speed as shown in Fig. 45(b). This reduced speed helps to
have a smaller radius turn and total traveled time [165]. Next, the
airplane starts to roll as the pitch angle decreases, where at 901
yaw angle, the vehicle is at zero pitch and maximum roll angle as
shown in Fig. 45(d). This is followed by a descent trajectory and

decreasing roll angle, increasing pitch angle, and increase in the
speed until the vehicle reaches the initial velocity and altitude. The
Immelmann turn as shown in Fig. 46 comprises a half loop with a
half roll at the end. The maneuver starts with a steep climb and
thus decreases the speed as shown in Fig. 46(b). At the maximum

Fig. 50. Target motion is a pitch harmonic motion as α¼ 71 sin ðωtÞ, M¼0.9, k¼0.01, and Re¼ 2� 106. In (a) static data are shownwith a solid line. The chord-wise pressure
distributions are shown for the wing sections at y=ðb=2Þ of 0.3, 0.6 and 0.9, where b is the wing span. (a) target motion; (b) point A; (c) point B; (d) point C; (e) point D;
(f) point E; and (g) point F.
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pitch angle, the aircraft heading suddenly changes from 01 to 1801,
which makes the aircraft final flight path exactly opposite of the
initial path. As the heading starts to increase, the aircraft performs
a half roll to level the wing as shown in Fig. 46(d). The final
altitude is slightly higher than the starting altitude as shown in
Fig. 46(a).

The time-marching simulations of these maneuvers were calcu-
lated using RANS simulations with grid motion. The computations
start from a steady-state solution corresponding to the initial state of

the maneuver and then advance in time using second-order temporal
accuracy. The grid moved and rotated at each time step according to
the maneuver descriptions shown in Figs. 45 and 46. Cobalt reports
time-dependent aerodynamic forces and moments in an inertia axis;
these forces and moments are then transformed to the wind axis and
normalized by the reference area and length and the dynamic
pressure at each time step. Fig. 47 depicts the predicted aerodynamic
loads of half Lazy-8 maneuver. The comparisons between the created
ROM with the time-marching model show good agreements for all

Table 4
Comparison of model costs and errors to predict the X-31 target motion at M¼0.9.

Costa Error (%) Comments

Volterra using spiral 21,500 1.42 Limited to the frequency of maneuver
Volterra using chirp 21,500 3.47 Might be applied to other frequencies
RBF using spiral 21,500 3.24 Limited to the frequency of maneuver
RBF using chirp 21,500 1.10 Might be applied to other frequencies
RBF using Schroeder 21,500 1.53 Might be applied to other frequencies
Linear indicial function 768 12.67 Small amplitude motions with any frequency
Nonlinear response function 5400 0.48 Any amplitudeb and frequency
SBRF in α–M space 344,000 0.98 Any amplitude, Machb at a fixed frequency
Response function in α–M space 27,000 0.48 Any amplitude, Machb and frequency

a CPU hours.
b Amplitude and Mach number should be within the range of input space.

Fig. 51. Volterra reduced order modeling using spiral and chirp training maneuvers. The flow conditions of training maneuvers are M¼0.9 and Re¼ 2� 106. (a) spiral
maneuver; (b) ROM prediction; (c) chirp maneuver; and (d) ROM prediction.
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coefficients. The predictions of aerodynamic loads for the Immelmann
turn are also shown in Fig. 48. Again, the ROM is in close agreement
with the time-marching model for all coefficients; small discrepancies
are found in the roll and yaw moments for maneuver times between
12 and 16 s, where the angle of attack is negative. This shows that the

roll and yaw moments of SACCON are not symmetric about zero
degrees angle of attack and hence the indicial functions need to
include negative angles of attack as well. Note that the cost of
generating each time-marching model is approximately 50,000 CPU
hours using 256 processors (2.7 GHz), but the model predictions are

Fig. 52. RBF reduced order modeling—training maneuver are a spiral, a chirp, and a Schroeder motion. The flow conditions areM¼0.9 and Re¼ 2� 106. (a) spiral maneuver;
(b) ROM prediction; (c) chirp maneuver; (d) ROM prediction; (e) Schroeder maneuver; and (f) ROM prediction.
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generated within a few seconds. Finally, the surface pressure distribu-
tions during maneuvers are shown in Fig. 49. The leading edge vortex
can be seen behind the leading edge on the upper wing around 101
angle of attack during the maneuvers.

6.4. X-31 aerodynamics modeling

All ROMs considered were evaluated for a similar target motion
to permit direct comparison of costs and errors. The objective of all
models is to predict the unsteady pitch moment resulting from a
sinusoidal pitch oscillation at a freestream Mach number of
0.9 and reduced frequency of k¼0.01. The amplitude of oscillation
is held constant at 71 and the mean angle of attack is zero degrees.
Fig. 50(a) shows the computed pitch moment coefficient, Cm, by
solving the RANS and SARC-DES turbulence model equations in a
time-accurate fashion. The cost of simulating three pitch cycles is
approximately 13,000 CPU hours using 256 processors (2.7 GHz).

Fig. 50(a) shows that the pitch moment curve of target motion
makes a nonlinear loop on the moment versus angle of attack
figure due to the occurrence of shock waves and vortices. This
figure also shows that the pitch moment curve is not symmetric
about zero degrees angle of attack. The moment curve shows a
negative slope during the pitch cycle such that it has more
negative slope values at negative angles of attack compared with
the slope values at positive angles of attack. Some flow features

during the pitch oscillation are shown in Fig. 50(b)–(g) and will be
briefly discussed here. In Fig. 50(b) the angle of attack is �2.11 and
a vortex can be seen emanating from the wing root on the lower
surface which spirals towards the wing tip. This vortex causes a
sharp negative pressure peak to occur close to the wing leading
edge as shown in the surface pressure plots of Fig. 50(b)–(d).
Fig. 50(b) also shows that a shock wave is formed on the lower
surface of the wing which is nearly perpendicular to the fuselage
before it interacts with the leading edge vortex. At the minimum
angle of attack in the pitch cycle, i.e. α¼�71, the leading edge
vortex becomes much stronger and the wing surface pressure
close to the leading edge drops further as shown in Fig. 50(c). This
figure also shows that as the angle of attack becomes smaller, the
shock moves downstream and therefore changes the pitch
moment curve slope. No vortices were observed on the wing
during pitching at positive angles of attack, but a vortex was
formed on the canard tip at the maximum angle of attack in the
pitch cycle, i.e. α¼71, as shown in Fig. 50(f). Fig. 50(e)–(g) shows
that a shock wave is formed over the upper surface which is no
longer perpendicular to the fuselage and moves slowly with
increasing in the angle of attack during upstroke. The model costs
and errors to predict this target motion are summarized in Table 4
with more details given below:

For the identification of the Volterra kernels, the chirp and
spiral training maneuvers were generated using CFD (RANS and

Fig. 53. ROM using indicial functions. The flow conditions are M¼0.9 and Re¼ 2� 106. (a) linear responses; (b) ROM based on linear responses; (c) non-linear responses;
and (d) ROM based on non-linear responses.
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SARC-DES turbulence model) as the source of the data. The
variations of angle of attack with time for these maneuvers are
shown in Fig. 51(a) and (c). Both maneuvers ran for 2.4 s of
physical time and started from a steady-state solution. The chirp
maneuver has an amplitude of 71 starting from zero degrees angle
of attack and pitching with a frequency of 1 Hz at t¼0. The chirp
motion frequency increases linearly with time. The spiral maneu-

ver has an initial amplitude of 3.51, starting from zero degrees
angle of attack and pitching at constant frequency of k¼0.01. The
oscillation amplitude in the spiral motion increases as time
progresses. Note that the spiral maneuver is at the reduced
frequency of the maneuver to be predicted. The cost of generating
each training maneuver is approximately 21,500 CPU hours using
256 processors.

Fig. 54. ROM using non-linear indicial functions for target motions at different angles of attack and frequency. The flow conditions are M¼0.9 and Re¼ 2� 106.
(a) α¼ 41 sin ðωtÞ, k¼0.01; (b) α¼ 61 sin ðωtÞ, k¼0.01; (c) chirp maneuver; (d) spiral maneuver; and (e) Schroeder maneuver.
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The first and second order kernels of the Volterra model were
estimated from time-history simulations of chirp and spiral train-
ing maneuvers. These estimations were used next to predict the
target motion. The ROM predictions based on spiral and chirp
training maneuvers are compared with target data in Fig. 51
(b) and (d). The comparisons show a good agreement with CFD
data for a ROM identified from spiral data (error norm is 1.42%),
but the ROM identified from chirp data does not match every-
where, in particular, around the maximum and minimum angles of
attack. The instantaneous frequency in the chirp maneuver varies
with time and hence it might not have sufficient information to
identify the Volterra kernels corresponding to a swept amplitude
motion at constant frequency. However, the ROM based on chirp
data possibly could be used for predicting aerodynamic responses
from pitch oscillations at other frequencies within the range of
input, but the ROM based on the spiral is possibly only valid for the
motions at a fixed reduced frequency.

The generated chirp and spiral training maneuvers were also
used to find a mapping between the pitch moment coefficient and
the instantaneous pitch motion variables. This mapping was next
learned using a RBF neural network. Also, a Schroeder maneuver
was defined by a multi-stage frequency sweep. This maneuver
started from an initial angle of attack of 4.951. The number of
frequencies in the maneuver, N, was set to 20 with an initial
amplitude of 71. This maneuver ran for 2.4 s of physical time as
well and is shown in Fig. 52(e). The aircraft responses to these
three maneuvers were generated using the URANS equations and
the SARC-DES turbulence model. The training data were next
normalized using the mean and standard deviation of each input.
The data were then rearranged according to Eq. (30) and the RBF
network performance was tested for different values of m and n,
with a performance error threshold of 1� 10�6. All networks
computed converged to the threshold error. The results showed
that usingm¼ n¼ 4 is sufficient for modeling the motions studied.
The trained networks were then tested against the target motion;
the ROM predictions are shown in Fig. 52(b), (d) and (f). These
figures show that the predicted ROM values agree well with the
time-marching solution, although the ROM based on chirp and
Schroeder maneuvers showed better accuracy than models based
on the spiral maneuver.

The indicial pitch moment responses of the X-31 aircraft with a
unit step change in angle of attack and pitch rate are shown in
Fig. 53(a). These functions correspond to the fixed Mach number of
0.9. In CLα simulations, the angle of attack is zero degrees at t¼0
and is held constant to one degree for all other times. In CLq
simulations, the grid starts to pitch up with a normalized pitch
rate of q¼1 rad at t¼0 and the angle of attack is held to zero
degrees during simulations with the aid of grid translation. All
computations started from a steady-state solution and then are
advanced in time using second-order temporal accuracy with five
Newton subiterations. As shown in Fig. 53(a), the pitch moment
responses have a negative peak at t¼0 followed by an increasing
trend. As the response time progresses the pitch moment
responses start to increase and then asymptotically reach the
steady-state values. The cost of generating each indicial function is
around 384 CPU hours using 256 processors. This model has much
lower cost than RBF and Volterra theory, because response func-
tions reach the steady state solutions in one order of magnitude
less time than the time used to complete training maneuvers.

A linear ROM was created using Eq. (23) and used for predic-
tion of target maneuver. The results are compared with time-
marching model in Fig. 53(b). The figure shows that linear ROM
fails to accurately predict the pitch moment values at all angle of
attack. The error norm value is 12.67%. The functions of CLα vary
largely with angles of attack in the transonic speed range and thus
a linear ROM cannot predict these effects.

Next, the X-31 CLα functions were simulated at different angles
of attack and at a freestreamMach number of 0.9 and are shown in
Fig. 53(c). Note that the pitch moment slope is not symmetric with
zero degrees angle of attack and hence the simulations included
both positive and negative angle of attack responses. The total cost
of generating a nonlinear ROM is now increased to approximately
5400 CPU hours (this is still cheaper than the cost of simulating
chirp, spiral and Schroeder maneuvers).

Fig. 53(c) shows that the responses at the initial time are
invariant with angle of attack, but the intermediate and final
values change depending on the angle of attack. Fig. 53(c) shows
that the pitch moment responses have more negative values than
positive angles of attack due to vortex formation on the lower
surface of the wing. A nonlinear ROM was created, and then using
a linear interpolation scheme, the prediction of the target man-
euver was evaluated. Fig. 53(d) shows that the nonlinear ROM
predictions agree very well with the time-marching simulation
values with an error of 0.48%.

Such a nonlinear ROM could be used for computing the pitch
moment responses from many other motions with different
amplitudes and frequencies. For example, the ROM was used to
predict two pitch oscillations with 41 and 61 amplitude at M¼0.9
and k¼0.01. The predictions are compared with time-marching
solutions in Fig. 54(a) and (b). Again a very good match was found.
Also, the ROM predictions were evaluated for the chirp, spiral and

Fig. 55. Samples and training pitch motions for a SBRF model. (a) samples design
for SBRF model and (b) training pitch motions for SBRF model.
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Schroeder maneuvers used in RBF work. Fig. 54(c)–(e) shows that
even for this varying amplitude and frequency motions, the
created ROM matches very well with the CFD data.

For the generation of the SBRF model, time-accurate simulations
were pre-computed for various combinations of pitch amplitude and
Mach number at a fixed reduced frequency. The two-dimensional
parameter space was filled using Design of Experiment methods and
is shown in Fig. 55(a). Also, the pitch motion simulations of all
samples are shown in Fig. 55(b). The SBRF model was used for the
prediction of the pitch moment coefficient time history for sinusoidal
forced motions about zero degrees angle of attack, amplitude of 71
and values of Mach number of 0.78, 0.825, and 0.88. Model
predictions are compared to time-accurate results in Fig. 56. Tests
were performed to evaluate the dependency of the model predic-
tions on the number of previous steps in the inputs (angle of attack
time history, first and second time derivatives, and Mach number)
and output (the prediction itself). No significant dependence was
found for values of m and n up to 2. This may be attributed to the
small time step increments used in the time-accurate simulations.
Although the method robustness could degrade for higher values of
m and n, it is considered relevant that the predictions are unaffected
for a range of values. In this work, the Kriging interpolation was used
to approximating the mapping function between inputs and outputs.
A good agreement is noted in Fig. 56 for all flight conditions, with the
model predictions being generated in few seconds.

An issue regarding the SBRF model is that the cost of simulating
three pitch cycles for each sample shown in Fig. 55(a) is around
13,000 CPU hours using 256 processor and the model still cannot
predict the aerodynamic responses to motions at other frequencies.
A ROM based on indicial functions, along with a time-dependent
surrogate approach, is proposed for aerodynamics modeling in the
angle of attack/Mach number/frequency space. In this model, the
indicial functions in the angle of attack and Mach number space are
interpolated from some available samples. A ROM based on these
functions is still cheaper than the time-marching model and SBRF
model because the indicial functions eliminate the need of repeating
calculation for each frequency.

The X-31 motions considered encompass α and M values in the
range of ½�71;71� and [0.75, 0.9], respectively. A set of samples
including 56 points is defined on the α and M space using factorial
design. These points are shown in Fig. 57(a).

The indicial functions with respect to angle of attack are
calculated using the CFD and grid motion approach for each
sample condition. The pitch rate indicial functions are calculated
for a unit step change in the pitch rate for each Mach number
shown in Fig. 57(a). The total cost of generating all functions is
now approximately 27,000 CPU hours. The calculated indicial
functions due to a unit step change in angle of attack are shown
in Fig. 57(b) for each Mach number in the sample design. This
figure shows that the pitch moment initial, intermediate, and final

Fig. 56. Transonic loads modeling in Mach number/angle of attack space at fixed reduced frequency. The ROM is a SBRF model. In above ω is angular velocity and k¼ωc=2V
is reduced frequency. (a) α¼ 71 sin ðωtÞ, k¼0.01, M¼0.78; (b) α¼ 71 sin ðωtÞ, k¼0.01, M¼0.825; and (c) α¼ 71 sin ðωtÞ, k¼0.01, M¼0.88.
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loadings are different at each Mach number. The initial peak in the
pitch moment becomes smaller for higher Mach number. Fig. 57
(c) also shows that pitch rate indicial functions decrease as the
Mach number increases.

A new ROM is now created along with a time-dependent
surrogate model to determine the terms in Eq. (24) at each time
step. The validity of the ROM is tested for several motions in the
angle of attack/frequency/Mach number space and compared with
time-accurate CFD simulations in Fig. 58. This figure shows that
the ROM predictions agree well with the CFD data, although small
discrepancies are found in the high-speed motions. This is likely
due to the sample design used with a uniform spacing and the fact
that the pitch moment changes suddenly at high speeds. More
samples at high speeds could improve the model predictions.

7. Conclusions

Aircraft stability and control analysis using CFD requires a very
large number of CFD simulations to determine appropriate forcing
parameters within the frequency/amplitude/Mach number space.

Typically, the time-accurate CFD simulations start from a steady
state solution and are marched (iterated) in pseudo time within
each physical time step using a dual-time stepping scheme. Also,
to have a free decay response to the initial grid perturbation, it is
often necessary to march time-accurate solutions for several
oscillations. The aircraft configurations used in this work have
highly swept slender wings resulting in complex vortical flow
under various conditions. A highly refined mesh and small time
step are required to accurately resolve the unsteady flow around
the aircraft in space and time. Because of the combination of large
grids and small time steps, and a large number of simulations, the
full-order modeling approach is expensive for stability and control
analysis of aircraft. This paper reviews the use of reduced order
models that significantly reduces the CFD simulation time
required to create a full aerodynamics database, making it possible
to accurately model aircraft static and dynamic characteristics
from a limited number of time-accurate CFD simulations.

The models considered were based on linear and nonlinear
indicial response theory, Volterra theory, radial basis functions,
and a surrogate-based recurrence framework. The response func-
tions were directly calculated from unsteady RANS simulations

Fig. 57. Time-dependent surrogate modeling of indicial functions. (a) samples design for indicial functions; (b) angle of attack indicial functions; and (c) pitch rate indicial
functions.
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starting from an initial steady-state condition with a prescribed
grid motion. An important feature of this approach is uncoupling
the effects of angle of attack and side-slip from angular rate
responses. A method to efficiently reduce the number of step

function calculations within the angle of attack/Mach number
space was described. This method uses a time-dependent surro-
gate model to fit the relationship between flight conditions (Mach
number and angle of attack) and step functions calculated for a

Fig. 58. Transonic loads modeling in Mach number/angle of attack/frequency space. The ROM is based on a time-dependent surrogate model that approximates the non-
linear indicial functions at different flight conditions. In above ω is angular velocity and k¼ωc=2V is reduced frequency.
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limited number of samples. These responses are a function of time
and include the effects of input time derivatives, therefore they
can be used for any frequency of interest. Models based on
response functions can predict the initial transient behavior seen
in the CFD solutions. However, these models are limited to weakly
nonlinear systems.

An indirect method was described to estimate the nonlinear
Volterra kernels from time-accurate computational fluid dynamic
simulations of some special training maneuvers. These maneuver-
ing simulations were also used to estimate the unknown para-
meters in a model based on RBF. The results showed that both
model predictions largely depend on the training maneuver type.
A Design of Experiment method was used to generate several
pitching motions at different amplitudes and free-stream Mach
numbers. The model based on a SBRF then approximated the
aerodynamic responses induced by pitching motions at new
amplitudes and Mach numbers. However, this model is usually
more expensive than other models to generate. Overall, the
reduced order models were found to produce accurate results
for low to moderate angles of attack and at reasonable
computational cost.
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