

Can Legacy Codes Scale on Tens of Thousands of PEs

or Do We Need to Reinvent the Wheel?

Robert F Tomaro, William Z. Strang and Kenneth E. Wurtzler

Cobalt Solutions, LLC

Over the last several years, there have been many discussions involving the potential

scalability of legacy codes/numerics concerning their ability to fully utilize large core count

machines. The prevailing thought and conclusion of those involved in the discussions were

that legacy codes could not scale well on thousands of processors, let alone tens of thousands

of processors. Therefore, new codes using new numerics had to be developed. In fact, a

large DoD effort was established 5 or 6 years ago tasked with developing the new numerics

required to fully utilize hundreds of thousands of processor machines. In light of the

recently published scalability results of the DoD’s effort at CFD code development, we

decided to retest the scalability of Cobalt to see if the above conclusion and results held true

for that legacy code.

I. Introduction

In the early 2000’s, Cobalt
1,2

was used for benchmarking new HPC machines. This included scalability

tests on KRAKEN, jvn, eagle and sapphire. NAVO received the 2048 processor IBM, KRAKEN, as a TI-

04 machine
3
. The first Capability Application Projects (CAP) were completed on KRAKEN including an

F/A-18E free-to-roll simulation using Cobalt. ARL received the 2048 processor linux-based machine,

jvn, in TI-04 while AFRL received the 2048 PE SGI, eagle
4
, as a TI-05 machine. Finally, sapphire was

installed at ERDC from TI-05
5
. This machine was a Cray XT3 containing 4176 processors. At that time,

sapphire was the most powerful supercomputer in DoD. The last time the scalability of Cobalt was

performed for HPC was on sapphire in 2005.

Figure 1 shows the 2005 scalability results for Cobalt for KRAKEN, jvn, eagle and sapphire. The chart

shows the super-linear speed-up of Cobalt on those four machines. Super-linear speed-up is defined as a

scalability efficiency greater than 100%. Of particular interest are the results on sapphire. These results

are often quoted as the best CFD scalability obtained by a production-level code. However, it is often

said that Cobalt scales up to 5000 processors. There are two problems with this statement. First, the

results on sapphire were on 4000 processors. Second, and more importantly, the phrase “scales up to”

implies that Cobalt did not scale beyond 4000 processors. In actuality, we simply ran out of machine.

The results on sapphire clearly show that scalability efficiency was still increasing at the processor limit.

Additionally, the grid size is never specified when these results are mentioned. We will show later that the

number of cells per processor is a critical parameter when measuring scalability efficiency. We state here

that the grid used in the 2005 scalability study contained 6.5 million cells.

Figure 2 shows the scalability of CREATE’s Kestrel v2.1b as presented by Morton
6
 at the 2011 HPC User

Group Conference. These results are for a 47 million cell grid on the Cray XE6, raptor, located at AFRL.

The CFD solver in Kestrel v2.1b is kAVUS, which is based on the legacy code AVUS from AFRL
7
. The

Figure 1: Scalability Results for Cobalt circa 2005

Figure 2: Scalability of Kestrel v2.1b in 2011

efficiency of Kestrel’s scalability is under 100% on 2048 PEs. On 4096 PEs, Kestrel’s scalability is 65%

which was deemed acceptable by Morton, et al.

II. Current Scalability Results for Cobalt

We decided to update the Cobalt scalability charts for a few reasons. First, it has been seven years since

the benchmarking was performed on sapphire. Second, there have been many modifications to the

internal workings of Cobalt in the time since. Third, machine architecture has changed from single-core

machines to multi-core machines, which could easily affect scalability results. Lastly, the current

scalability results of Kestrel v2.1b on raptor show, in our opinion, poor scalability. This could imply that

Cobalt, another so-called legacy code, will not scale well on the current architectures at HPC, which must

be investigated. We will present scalability results on three different single-grid meshes as well as one

overset case. The largest single grid case will be compared with Kestrel v2.1b.

A. 3.15 Million Cell Grid

The 3.15 million cell grid is a hybrid grid around a JDAM, which is similar to the store from the F-18C

store separation challenge of 1999
8
. The grid has roughly 2.7 million tetrahedrons and 430K prisms. The

baseline number of PEs, or the minimum number of PEs, used on this case was 32. This baseline is used

to determine the scalability on greater numbers of PEs and, typically, one tries to make the baseline as

small as possible. The scale factor at the baseline will always be one. The 3.15 million cell grid was run

on 32, 64, 128, 258, 512, 1024, 2048 and 4096 PEs on raptor using Cobalt V5.2. Figure 3 provides the

scalability curve for this grid.

Figure 3: Cobalt Scalability on Raptor for a 3.15 Million Cell Grid

0

16

32

48

64

80

96

112

128

0 512 1024 1536 2048 2560 3072 3584 4096

Sc
al

e
 F

ac
to

r

Number of PE's

Linear

Cobalt V5.2

771 Cells/PE
78.6% Scalability

Table 1: Results for 3.15 Million Cell Grid

Number of PE's Cells per PE Scalability Efficiency

32 98663 100.0%

64 49332 102.9%

128 24666 103.2%

256 12333 103.5%

512 6166 98.1%

1024 3083 93.0%

2048 1542 80.5%

4096 771 78.6%

Table 1 presents scalability efficiency as a function of processor count and number of cells per processor.

For this grid, Cobalt has super-linear speed-up for 64, 128 and 256 PEs. This is due to enhanced cache

performance as the number of cells per PE decreases. Even at 771 cells per PE, Cobalt is achieving

nearly 80% scalability efficiency. Below this number of cells per PE, communication is starting to cost

more than the computation thereby decreasing scalability efficiency.

B. 10 Million Cell Grid

The 10 million cell grid is a hybrid grid around an F-18C. This grid has roughly 8 million tetrahedrons

and 2.1 million prisms. The baseline number of PEs used on this case was 32. This grid contains several

types of boundary conditions including no-slip solid walls, far-field, engine exhaust and inlets. The 10

million cell grid was run on 32, 64, 128, 258, 512, 1024, 2048, 4096, 8192 and 15,360 PEs on raptor

using Cobalt V5.2. Figure 4 provides the scalability curve for this grid.

Table 2 shows scalability as a function of processor count and number of cells per processor. For this

grid, Cobalt has super-linear speed-up from 64 to 2048 PEs. Even at 657 cells per PE, Cobalt is

achieving 70% scalability efficiency.

Table 2: Results for the 10 Million Cell Grid

Number of PE's Cells per PE Scalability Efficiency

32 315319 100.0%

64 157659 104.4%

128 78830 106.4%

256 39415 108.3%

512 19707 111.4%

1024 9854 106.8%

2048 4927 106.3%

4096 2463 93.8%

8192 1232 89.3%

15360 657 70.3%

Figure 4: Cobalt Scalability on Raptor for a 10 Million Cell Grid

C. 49 Million Cell Grid

The 49 million cell grid is a hybrid grid around a C-17. This grid has roughly 44 million tetrahedrons and

5.3 million prisms. The baseline number of PEs used on this case was 96. This grid contains several

types of boundary conditions including no-slip solid walls, far-field, engine exhaust and inlets. We

selected this size of grid to be comparable to the Kestrel results in Figure 2. This grid was run on 96

through 21,856 PEs on raptor using Cobalt B5.11. Twenty-one thousand, eight-hundred fifty-six PEs is

half the number of PEs of raptor and can be accessed through the regular queue. Figure 5 provides the

scalability curve for this grid.

During initial scalability testing of Cobalt V5.2, we discovered that the grid partitioning phase began to

require excessive CPU time once the number of PEs exceeded around 6000. In fact, the grid partitioning

step required 50 minutes of wall clock time on 8,192 PEs. This was deemed unacceptable. Diagnosis

revealed that the problem was in the integration of Cobalt with the ParMETIS graph partitioning

software
9
. After a couple hours of rewriting code in our current beta release, we were able to reduce the

grid partitioning phase to 50 seconds on 8,192 PEs and 124 seconds on 21,856 PEs. We therefore

decided to use our current beta, Cobalt B5.11, for the scalability tests for the 49 million cell grid. This

version also uses the latest release of ParMETIS, V4.0.

0

48

96

144

192

240

288

336

384

432

480

0 3072 6144 9216 12288 15360

Sc
al

e
 F

ac
to

r

Number of PE's

Linear
Cobalt V5.2

70.3% scalability
657 Cells/PE

Figure 5: Cobalt Scalability on Raptor for a 49 Million Cell Grid

Table 3 shows scalability as a function of processor count and number of cells per processor. For this

grid with this baseline, Cobalt has super-linear speed-up from 256 to 21,856 PEs.

Table 3: Results for the 49 Million Cell Grid

Number of PE's Cells per PE Scalability Efficiency

96 514662 100.0%

128 385996 100.0%

256 192998 104.9%

512 96499 109.3%

1024 48250 116.3%

2048 24125 122.4%

4096 12062 123.8%

8192 6031 121.1%

16384 3016 111.3%

21856 2261 110.7%

0

32

64

96

128

160

192

224

256

0 2732 5464 8196 10928 13660 16392 19124 21856

Sc
al

e
 F

ac
to

r

Number of PE's

Linear
Cobalt B5.11

D. 13 Million Overset Grid

Lastly, we wanted to test the scalability of an overset case. The 13 million cell grid is a combination of

the F-18C and JDAM grids using the Overset module available in Cobalt. The baseline number of PEs

used on this case was 32. Unfortunately, each overset case will scale differently because of the hole-cuts

being different for each case. The Overset module does not scale as well as a single-grid case. This case

was run on 32, 64, 128, 258, 512, 1024, 2048, and 4096 PEs on raptor using Cobalt V5.2. Figure 6

provides the scalability curve for this Overset grid.

III. Conclusions

The goals of this study were: 1. To update the scalability charts of Cobalt; 2. To see if Cobalt still scaled

well on modern machine architectures, with tens of thousands of processors; 3. To investigate the validity

of the general conclusion that no legacy code can achieve this level of scalability, requiring the

development of new numerics.

Figures 3, 4 and 5 show the scalability of Cobalt for various size grids. All three figures prove that

Cobalt is highly scalable even on tens of thousands of processors. To compare the scalability of the three

different grid sizes, scalability efficiency based on the number of cells per PE is plotted in Figure 7. We

set the baseline for each grid to the data point that was closest to 100,000 cells per PE. For the 3.15

million cell grid and the 10 million cell grid, the curves are very similar. With this baseline, super-linear

0

16

32

48

64

80

96

112

128

0 512 1024 1536 2048 2560 3072 3584 4096

Sc
al

e
 F

ac
to

r

Number of PE's

Figure 6: Cobalt Scability on Raptor on a 13 Million Cell Overset Grid

Linear

Cobalt V5.2

89.3% scalability
6496 Cells/PE

60.8% scalability
3234 Cells/PE

speed-up is obtained when the number of cells per processor is greater than 8,000. A scalability

efficiency of around 90% is achieved for 1,500 to 2,000 cells per PE or larger and 80% scalability

efficiency is obtained for roughly 1,000 cells per PE. The 49 million cell grid shows even better

scalability performance. This is due in part to changes in Cobalt from V5.2 to B5.11 and to the use of

ParMETIS V4.0. Figure 7 provides some guidance for users to estimate the number of PEs they should

request to obtain the best scalability for their grid.

Figure 7: Scalability Efficiency versus Number of Cells Per PE

In order to compare the scalability of Cobalt and the current state-of-the-art CFD effort of the CREATE

program, whose supposed task is to develop software that scales well on hundreds of thousands of PEs,

we used a grid similar in size to their grid (49 million versus 47 million) and ran on the same machine

they ran (raptor). To be fair, the following comparison also uses a baseline of 512 PEs, which is the

value Morton, et al. used for Kestrel v2.1b, and not the baseline value of 96 PE’s used in the Cobalt

results shown in Figure 5. Figure 8 compares the scalability of Cobalt and Kestrel. At the maximum

number of PEs that Morton, et al. presented, Kestrel v2.1b has 65% scalability efficiency on 4096 PEs

whereas Cobalt achieves 113% scalability efficiency on 4096 PEs. In fact, Cobalt continues to be super-

linear all the way up to 21,856 PEs which is the maximum number we used. Further, Kestrel has a

scalability efficiency of 65% with 11,475 cells/PE. The lowest scalability efficiency of Cobalt found in

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

110.00%

120.00%

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

Sc
al

ab
ili

ty

Number of Cells Per Processor

3 million cells (V5.2)
10 million cells (V5.2)
49 million cells (B5.11)

this study is 70.3% with 657 cells/PE. Using Tables 1-3 and Figure 7, we estimate that Cobalt would

have a scalability efficiency greater than 80% on 60,000 PEs with this 49 million cell grid.

Figure 8: Comparison of Cobalt and Kestrel Scalability on Raptor

The current versions of Cobalt, V5.2 and B5.11, both available on most HPC machines, have proven to

be highly scalable, scaling well on tens of thousands of processors. We have also shown that Cobalt

clearly has the potential to scale well on hundreds of thousands of processors, given a grid size of roughly

85 million cells or larger. We have shown that scalability efficiency for Cobalt can be roughly predicted

based on a cells-per-PE basis. Finally, the general conclusion that so-called legacy codes cannot scale

well on tens to hundreds of thousands of processors has been shown to be erroneous.

References

1
Strang, W. Z., Tomaro, R. F., and Grismer, M. J., “The Defining Methods of Cobalt: A Parallel, Implicit,

Unstructured Euler/Navier-Stokes Flow Solver," AIAA Paper 1999-0786, 1999.
2
Tomaro, R. F., Strang, W. Z., and Sankar, L. N., “An Implicit Algorithm For Solving Time Dependent

Flows on Unstructured Grids," AIAA Paper 1997-0333, 1997.
3
Navigator, NAVO MSRC, Spring 2005.

0

8

16

24

32

40

48

0 2732 5464 8196 10928 13660 16392 19124 21856

Sc
al

e
 F

ac
to

r

Number of PE's

Linear

Cobalt B5.11 (49 million cell grid)

Kestrel v2.1b (47 million cell grid)

Kestrel - 65% scalability

Cobalt - 113% scalability

4
Wright Cycles, ASR, Spring 2006.

5
ERDC MSRC Resource, Fall 2005.

6
Morton, S. A., Eymann, T. A., Lamberson, S. R., McDaniel, D. R., Sears, D. R., Tuckey, T. R. and

Utrilla, J., Rigid and Maneuvering Aircraft Results for Kestrel v2 with Kestrel v3 Design Attributes, DoD

HPCMP User’s Group Conference, Portland OR, 21-23 June 2011.
7
Douglas, C. C. and Zornes, A. F., “Computational Fluid Dynamics (CFD) Modeling and Analysis,

Delivery Order 0006: Cache-Aware Air Vehicles Unstructured Solver (AVUS),” AFRL-VA-WP-TM-

2006-3009, August, 2005.
8
Tomaro, R.F, Witzeman, F. C. and Strang, W. Z., “A Solution on the F-18C for Store Separation

Simulation Using Cobalt60,” AIAA Paper 1999-0122
9
Karypis, G. and Kumar, V., “Multilevel Algorithms for Multi-Constraint Graph Partitioning,”

Supercomputing, May 5, 1998.

