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A new approach for computing the unsteady and nonlinear aerodynamic loads acting on
a maneuvering aircraft is presented. This approach is based on Duhamel’s superposition
integral using indicial (step) response functions. The novelty of this approach relies on
the development of a time-dependent surrogate model that fits the relationship between
flight conditions (Mach number and angle of attack) and indicial functions calculated from
a limited number of simulations (samples). The aircraft studied in the current paper
exhibit highly nonlinear roll moment and therefore a very large number of step functions
need to be calculated to accurately predict the aerodynamic behavior at each instant of
time spent in aircraft maneuvers. The reduced order model, along with the surrogate
model, provide a mean for rapid calculation of step functions and predicting aerodynamic
forces and moments during maneuvering flight. The maneuvers are generated using a
time-optimal prediction code with the feasible solutions based on the vehicle control and
state constraints. Results presented show that the developed surrogate model aids in
reducing the overall computational cost to develop cost-effective reduced-order models.
It is also demonstrated that the reduced order model used can accurately predict time-
marching solutions of maneuvering aircraft, but with an advantage that reduced order
model predictions only require on the order of a few seconds of computational time.

I. Introduction

The use of Computational Fluid Dynamics (CFD) simulations during the preliminary aircraft design phase
has been continuously increasing because the unsteady aerodynamic characteristics can have a significant
effect on the aircraft calculated stability and control characteristics.1 Despite their greatest efforts using
the best available predictive capabilities, nearly every major fighter program since 1960 has had costly
nonlinear aerodynamic or fluid-structure interaction issues that were not discovered until flight testing.2

Some recent aircraft experiencing unexpected characteristics are the F/A-18, F-18E, and F-22.2, 3 The lack
of full understanding of unsteady aerodynamics typically leads to “cut and try” efforts, which result in very
expensive and time-consuming solutions.4 The CFD tools have become credible for the computation of
aerodynamics experienced by a maneuvering fighter with time history effects and hence would help to reduce
the amount of wind tunnel and flight testing. At the highest practical level, a full-order aerodynamic model
can be developed based on the direct solution of the discretized Reynolds-Averaged Navier-Stokes (RANS)
equations coupled with the dynamic equations governing aircraft motion.5 First attempts at this approach
were limited to two-dimensional test cases, while with recent advances in computing techniques and the
capabilities provided by high performance computing resources, the coupled CFD-flight dynamics of a full
aircraft has been studied.6, 7 The full-order modeling is an infinite-dimensional problem because the solution
at each time depends on all of the states at times prior to the current state and the flow equations describe
the motion of the fluid at infinitely many points.5, 8 Also, the high computational cost associated with
this type of simulation for stability and control analysis still remains a challenging problem. For example,
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researchers at NASA Ames have attempted to perform a “brute force” approach to filling a stability and
control database for vehicle design. They found that a reasonable database for static stability and control
derivatives would include on the order of 30 different angles-of-attack, 20 different Mach numbers, and 5
different side-slip angles, each for a number of different geometry configurations or control surface deflections.9

They estimated that filling this database would conservatively require 10,000 to 20,000 static CFD runs, and
this approach does not address the dynamic stability characteristics of the aircraft. Using CFD in this way
is therefore unrealistic.

To make timely progress in the use of CFD for aircraft design, the efforts over the last few years have been
spent mainly on the development of a Reduced Order Model (ROM) using CFD from an appropriate training
maneuver(s) and an accurate System IDentification (SID) approach.10–12 The objective of the ROMs is to
develop a model that significantly reduces the CFD simulation time required to create a full aerodynamics
database, making it possible to accurately model aircraft static and dynamic characteristics from a number
of time-accurate CFD simulations. Recent efforts on the development of ROMs can be classified into two
types: time domain or frequency domain approaches.13 The frequency domain models are obtained from
matching transfer functions computed from the measured input-output data.14 Examples of the frequency
domain ROMs are the indicial response method by Ballhaus and Goorjian15 and Tobak et al.,16, 17 and a
frequency-domain approach based on proper orthogonal decomposition by Hall.18 Some examples of time
domain ROMs include the unit sample response by Gaitonde and Jones,19 Volterra theory by Silva and
Bartels,20 Radial Basis Functions (RBF)21 and state-space modeling.22 The current paper aims to assess
the accuracy of prediction of reduced order models based on the indicial response theory.

The transient aerodynamic response due to a step change in a forcing parameter, such as angle of attack
or pitch rate is a so-called “indicial function”. Assuming that the indicial functions are known, the aerody-
namic forces and moments induced in any maneuver can be estimated by using the well-known Duhamel’s
superposition integral.23 Although, the indicial functions are used as a fundamental approach to represent
the unsteady aerodynamic loads, there is only limited report of using these functions for aerodynamics mod-
eling of three-dimensional configurations. Experimental tests are practically nonexistent for indicial function
measurements due to wind tunnel constraints. Limited analytical expressions of indicial functions exist for
two-dimensional airfoils.24 However, these analytical expressions are not valid for aircraft configurations due
to the three-dimensional tip vortices. The only direct method for determination of response functions is
using CFD.25

Recently, the CFD solutions for the indicial response of airfoils and wings have been reported (see for
example, Manglano-Villamarin and Shaw,26 Singh and Baeder27 and Raveh28). Also, Ghoreyshi et al.25

described an approach based on a grid motion technique for CFD-type calculation of linear and nonlinear
inidical functions with respect to angle of attack and pitch rate. Ghoreyshi and Cummings29 later used this
approach to generate linear indicial functions due to longitudinal and lateral forcing parameters of a generic
unmanned combat air vehicle (UCAV) and used these functions for predicting the aerodynamic responses to
aircraft six degrees of freedom maneuvers. They showed that while lift, side-force and pitch moment match
quite well with full-order simulations in the linear regime but the roll and yaw moments do not match even
at low angles of attack. For the vehicle studied, the roll and yaw moment variation with the angle of attack
and Mach number is highly nonlinear. The objective of this paper is to extend the ROM to include the
effects of angle of attack and Mach number in the indicial functions.

Having a ROM to predict the aerodynamic responses to any arbitrary motion over a wide flight regime
could become a very expensive approach because a large number of indicial functions need to be computed
for each combination of angle of attack and free-stream Mach number. Typically, the CFD simulation of
indicial functions start from a steady state solution and are marched (iterated) in pseudo time within each
physical time step using a dual-time stepping scheme. The generation of all response functions in the angle
of attack/Mach number space using CFD is therefore expensive and makes the creation of a ROM very time
consuming. Note that these models are still cheaper than full-order simulations because the ROMs based
on indicial functions eliminate the need to repeat calculations for each frequency. In this paper, a surrogate
model is proposed based on the Kriging technique30 to model indicial functions for a new flight conditions
from available (observed) responses. These observed responses are viewed as a set of time-correlated spatial
processes where the output is considered a time-dependent function.

The main objective of the present study is to develop a reduced order model based on Duhamel’s super-
position integral using indicial (step) response functions for computing the aerodynamic loads acting on a
maneuvering aircraft. The indicial functions include longitudinal and lateral forces and moments and are
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directly calculated using unsteady RANS simulations with a prescribed grid motion. A method to efficiently
reduce the number of indicial response calculations is proposed. This method uses a time-dependent surro-
gate model to fit the relationship between flight conditions and response functions from a limited number
of response simulations (samples). The six-degree-of-freedom (6-DOF) aerodynamics model is then created
with predicted indicial functions at each time instant using the developed surrogate model. The model will
then be evaluated for two generated maneuvers, which were replayed directly through an unsteady CFD
simulation. The maneuvers were defined using a time optimal control solver.

II. Formulation

A. CFD Solver

The flow solver used for this study is the Cobalt code31 that solves the unsteady, three-dimensional and
compressible Navier-Stokes equations in an inertial reference frame. These equations in integral form are32

∂

∂t

∫∫∫

QdV +

∫∫

(f̂i+ gĵ + hk̂).n̂dS =

∫∫

(r̂i+ sĵ + tk̂).n̂dS (1)

where V is the fluid element volume; S is the fluid element surface area; n̂ is the unit normal to S; î, ĵ,
and k̂ are the Cartesian unit vectors; Q = (ρ, ρu, ρv, ρw, ρe)T is the vector of conserved variables, where
ρ represents air density, u, v, w are velocity components and e is the specific energy per unit volume. The
vectors of f, g, and h represent the inviscid components and are detailed below

f = (ρu, ρu2 + p, ρuv, ρuw, u(ρe+ p))T

g = (ρv, ρv2 + p, ρvu, ρvw, v(ρe+ p))T (2)

h = (ρw, ρw2 + p, ρwv, ρwv,w(ρe + p))T

where the superscript T denotes the transpose operation. The vectors of r, s, and t represent the viscous
components which are described as

r = (0, τxx, τxy, τxz, uτxx + vτxy + wτxz + kTx)T

s = (0, τxy, τyy, τyz, uτxy + vτyy + wτyz + kTy)
T (3)

t = (0, τxz, τzy, τzz, uτxz + vτzy + wτzz + kTz)
T

where τij are the viscous stress tensor components, T is the temperature, and k is the thermal conductivity.
The ideal gas law and Sutherland’s law closes the system of equations and the entire equation set is nondi-
mensionalized by free stream density and speed of sound.31 The Navier-Stokes equations are discretised
on arbitrary grid topologies using a cell-centered finite volume method. Second-order accuracy in space is
achieved using the exact Riemann solver of Gottlieb and Groth,33 and least squares gradient calculations
using QR factorization. To accelerate the solution of discretized system, a point-implicit method using
analytic first-order inviscid and viscous Jacobians. A Newtonian sub-iteration method is used to improve
time accuracy of the point-implicit method. Tomaro et al.34 converted the code from explicit to implicit,
enabling Courant-Friedrichs-Lewy numbers as high as 106. The Cobalt solver has been used at the Air Force
Seek Eagle Office (AFSEO) and the United States Air Force Academy (USAFA) for a variety of unsteady
nonlinear aerodynamic problems of maneuvering aircraft.35–39

B. Indicial Theory

The mathematical models of using indicial responses for modeling unsteady aerodynamics of a maneuvering
aircraft were detailed by Ghoreyshi and Cummings.29 In this model, the response functions were generated
at different free-stream Mach numbers. In this paper, a more general approach is used where the responses
in the angle of attack and side-slip depend on both the angle of attack and Mach number. It is assumed that
the indicial functions with respect to the angular rates change with changes in free-stream Mach number
but do not vary with the changes in angle of attack for the maneuvers studied. In this approach, the time
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responses in lift due to the step changes in angle of attack, α, and normalized pitch rate, q, are denoted as
CLα and CLq, respectively. The unsteady lift coefficient at time t is obtained as:

CL(t) = CL0(M) +
d

dt

[
∫ t

0

CLα(t− τ, α,M)α(τ)dτ

]

+
d

dt

[
∫ t

0

CLq(t− τ,M)q(τ)dτ

]

(4)

where, CL0 denote the zero-angle of attack lift coefficient and is found from static calculations; M denotes
the free-stream Mach number. Note that the indicial response function with respect to the rate of change of
velocity, i.e. V̇ are assumed small and are not modeled. Likewise, the time responses in pitch moment due
to the step changes in α, and q, are denoted as Cmα and Cmq and then the pitch moment is estimated as
follows:

Cm(t) = Cm0(M) +
d

dt

[
∫ t

0

Cmα(t− τ, α,M)α(τ)dτ

]

+
d

dt

[
∫ t

0

Cmq(t− τ,M)q(τ)dτ

]

(5)

The unsteady effects in drag force are assumed to be small and therefore are not discussed here. The response
function due to pitch rate, i.e. Cjq(M) for j = L,m can be estimated using a time-dependent interpolation
scheme from the observed responses. This value is next used to estimate the second integrals in Eqs. 4 and 5,
however, the estimation of the integral with respect to the angle of attack needs more explanation. Assuming
a set of angle of attack samples of α = [α1, α2, ..., αn] at free-stream Mach numbers of M = [M1,M2, ...,Mm],
the pitch moment response to each angle of αi, i = 1, 2, ..., n at Mach number of Mj, j = 1, 2, ...,m is denoted
as Aα(t, αi,Mj). In these response simulations, α(t) = 0 at t = 0 and is held constant at αi for all t > 0. For
a new angle of α∗ > 0 at a new free-stream Mach number of M∗, the responses of Aα(t, αk,M

∗) are being
interpolated at αk = [α1, α2, ..., αs], such that 0 < α1 < α2 < ... < αs and αs = α∗. These angles can have a
uniform or non-uniform spacing. The indicial functions of Cjαk

for k = 1, ..., s at each interval of [αk−1, αk]
are defined as

Cjα1
=

Aα(t, α1,M
∗) − Cj0(M

∗)

α1
(6)

Cjαk
=

Aα(t, αk,M
∗) −Aα(t, αk−1,M

∗)

αk − αk−1
(7)

where Cj0 denotes the zero angle of attack pitch moment coefficient. The interval indicial functions are then
used to estimate the values of first integrals in Eqs. 4 and 5. These steps can easily be followed for a negative
angle of attack, i.e. α∗ < 0. Assuming that the lateral loads only depend on side-slip angle (β), normalized
roll rate (p), and normalized yaw rate (r), the unsteady lateral forces and moments using indicial functions
are written as:

CY (t) =
d

dt

[
∫ t

0

CY β(t− τ, α,M)β(τ)dτ

]

+
d

dt

[
∫ t

0

CY p(t− τ,M)p(τ)dτ

]

+

d

dt

[
∫ t

0

CY r(t− τ,M)r(τ)dτ

]
(8)

Cl(t) =
d

dt

[
∫ t

0

Clβ(t− τ, α,M)β(τ)dτ

]

+
d

dt

[
∫ t

0

Clp(t− τ,M)p(τ)dτ

]

+

d

dt

[
∫ t

0

Clr(t− τ,M)r(τ)dτ

]
(9)

Cn(t) =
d

dt

[
∫ t

0

Cnβ(t− τ, α,M)β(τ)dτ

]

+
d

dt

[
∫ t

0

Cnp(t− τ,M)p(τ)dτ

]

+

d

dt

[
∫ t

0

Cnr(t− τ,M)r(τ)dτ

]
(10)
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where, CY , Cl andCn denote the side-force, roll and yaw moments, respectively. The functions ofCLα(t, α,M),
Cmα(t, α,M), CLq(t,M), Cmq(t,M), CY β(t, α,M), Clβ(t, α,M), Cnβ(t, α,M), CY p(t,M), Clp(t,M), Cnp(t,M),
CY r(t,M), Clr(t,M), and Cnr(t,M) are unknown and will be determined in this paper using CFD with a
grid movement tool, along with a time-dependent surrogate model.

C. Surrogate-Based Modeling of Indicial Functions

Having a ROM to predict the aerodynamic responses to any arbitrary motion over a wide flight regime
could become a very expensive approach because a large number of indicial functions needs to be computed.
In order to achieve a reasonable computational cost, a special time-dependent surrogate-based modeling
approach is adapted to predict indicial responses for a new point from available (observed) responses. These
observed responses are viewed as a set of time-correlated spatial processes where the output is considered a
time-dependent function. Romero et al.40 developed a framework for multi-stage Bayesian surrogate models
for the design of time dependent systems and tested their model for free vibrations of a mass-spring-damper
system assuming the input parameters of stiffness and damping factor at different initial conditions. This
framework is examined for reduced order modeling of nonlinear and unsteady aerodynamic loads. Assume
an input vector of x (t) =

(

x1 (t) , x2 (t) , ..., xn (t)
)

where n represents the dimensionality of the input
vector. To construct a surrogate model for fitting the input-output relationship, the unsteady aerodynamic
responses corresponding to a limited number of input parameters (training parameters or samples) need to
be generated. Design of Experiment methods, for example, can be used to select m samples from the input
space. The input matrix D(m× n) is then defined as:

D =













x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

...
...

xm1 xm2 · · · xmn













(11)

where rows correspond to different combinations of the design parameters. For each row in the input matrix,
a time-dependent response was calculated at p discrete values of time, and this information is summarized
in the output matrix of Z(m× p) as:

Z =













y11 y12 · · · y1p

y21 y22 · · · y2p

...
...

...
...

ym1 ym2 · · · ymp













(12)

where for aerodynamic loads modeling, p equals the number of iterations used in time-marching CFD calcu-
lations. The objective of surrogate modeling is to develop a model that allows predicting the aerodynamic
response of y(x0) =

(

y01, y02, ..., y0p

)

at a new combination of input parameter of x0. To construct this
surrogate model, the responses at each time step are assumed as a separate set, such that each column of
the output matrix is a partial realization of the total response. In this sense, p surrogate models are created;
they are denoted as Zi (D) for i = 1, 2, ..., p. A universal-type Kriging function30 is used to approximate
these models. Each Zi (D) function can be approximated as the sum of a deterministic mean (trend), µ and
a zero-mean spatial random process, ǫ with a given covariance structure of σ2, therefore each function value
at the new sample of x0 is

Z̃i (x0) = µ+ ǫ (13)

where, the tilde accent shows that surrogate model is an approximation of the actual function. Universal
Kriging, which is used in this paper, assumes that the mean value µ is a linear combination of known
regression functions of f0(x), f1(x), .., fn(x). In this paper, the linear functions are used, therefore, f0(x) = 1
and fj(x) = xj for j = 1, 2, ..., n. This changes Eq. (13) as:
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Z̃i (x0) =
n

∑

j = 0

βijfj (x0) + ǫ (14)

where βij represent the regression coefficient for the j-th regression function of response function at time
step i, i = 1, 2, ..., p. To estimate the spatial random process of ǫ, a spatially weighted distance formula is
defined between samples given in matrix D such that for sample xi and xj , the distance is written as:

d (xi,xj) =
n

∑

h =1

θh

∣

∣

∣
x

(i)
h − x

(j)
h

∣

∣

∣

ph

(θh ≥ 0 and ph ∈ [0, 1]) (15)

where |.| shows the Euclidean distance; the parameter θh expresses the importance of the h-th component
of the input vector, and the exponent ph is related to the smoothness of the function in coordinate direction
h. A correlation matrix R(m×m) with a Gaussian spatial random process is then defined as:

R =











exp
[

− d(x1,x1)
σ2

]

exp
[

− d(x1,x2)
σ2

]

· · · exp
[

− d(x1,xm)
σ2

]

...
...

...
...

exp
[

− d(xm,x1)
σ2

]

exp
[

− d(xm,x2)
σ2

]

· · · exp
[

− d(xm,xm)
σ2

]











(16)

To compute the Kriging model, values must be estimated for βij , σ, θh, and ph. These parameters can
be quantified using the maximum likelihood estimator, as described by Jones et al.41 Next the vector of
R(m× 1) is defined from correlations between the new design parameter x0 and the m sample points, based
on the distance formula in Eq. (15), i.e.

r =

















exp
[

− d(x1,x0)
σ2

]

exp
[

− d(x2,x0)
σ2

]

...

exp
[

− d(xm,x0)
σ2

]

















(17)

and now Z̃i (x0) can be estimated as

Z̃i (x0) =

n
∑

j =0

βijfj (x0) + rT R−1 (Zi (D) − Fβ) (18)

where, β is the n+ 1 dimensional vector of regression coefficients; Zi (D) is the observed responses at time
step i, i = 1, 2, ..., p and matrix F is

F =









f0 (x1) f1 (x1) · · · fn (x1)
...

...
...

...

f0 (xm) f1 (xm) · · · fn (xm)









(19)

The total response at x0 is then combination of predicted values of each surrogate model, i.e.

Z̃ (x0) =
(

Z̃1 (x0) , Z̃2 (x0) , ..., Z̃p (x0)
)

(20)
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D. CFD Calculation of Indicial Functions

Limited analytical expressions of indicial functions exist for two-dimensional airfoils.24 For incompressible
flows, Wagner42 was the first who detailed the analytical unsteady lift of a thin airfoil undergoing a plunging
motion using a single indicial function (the so-called Wagner’s function) with its exact values defined in
terms of Bessel functions. His function was approximated in non-dimensional time by a two-pole exponential
function as43

CLα = 1 − 0.165 exp(−0.0455s)− 0.33 exp(−0.3s) (21)

where s = 2V t/c is the normalized time. Note that Wagner’s function is valid only for low speed flows and
the times after the initial disturbance. Lomax44 later used the linearized Euler equations to derive exact
initial values of the compressible indicial response of a flat plate airfoil to a step change in the angle of attack,
and his equation was expressed as:

CLα =
4

M

(

1 −
1 −M

2M
s

)

(22)

where M is the Mach number. However, these analytical expressions are not valid for aircraft configurations
due to three-dimensional tip vortices. An alternative is to use CFD, but special considerations are required
to simulate step responses in CFD. Singh and Baeder27 used a surface transpiration approach to directly
calculate the angle of attack indicial response using CFD. Ghoreyshi et al.25 also described an approach
based on a grid motion technique for CFD-type calculation of linear and nonlinear inidical functions. In this
paper, the indicial functions due to longitudinal and lateral forcing parameters (angle of attack, side-slip
angle, and angular rates) are calculated using CFD and the grid motion approach.

Cobalt uses an arbitrary Lagrangian-Eulerian formulation and hence allows all translational and rotational
degrees of freedom.25 The code can simulate both free and specified six degree of freedom (6DoF) motions.
The rigid motion is specified from a motion input file. For the rigid motion the location of a reference point
on the aircraft is specified at each time step. In addition the rotation of the aircraft about this reference
point is also defined using the rotation angles of yaw, pitch and roll (bank). The aircraft reference point
velocity, va, in an inertial frame is then calculated to achieve the required angles of attack and sideslip, and
the forward speed. The velocity is then used to calculate the location. The initial aircraft velocity, v0, is
specified in terms of Mach number, angle of attack and side-slip angle in the main file. The instantaneous
aircraft location for the motion file is then defined from the relative velocity vector, va − v0. For CFD-type
calculation of a step change in angle of attack, the grid immediately starts to move at t = 0 to the right and
downward as shown in Fig. 1. The translation continues over time with a constant velocity vector. Since
there is no rotation, all the effects in aerodynamic loads are from changes in the angle of attack. For a unit
step change in pitch rate, the grid moves and rotates simultaneously. The grid starts to rotate with a unit
pitch rate at t = 0. To hold the angle of attack zero during the rotation, the grid moves right and upward
in Fig. 1.

E. Time Optimal Maneuvers

An optimal control approach45, 46 is used to generate 6-DOF maneuvers for a generic UCAV with the feasible
solutions based on the vehicle control and state constraints. This approach finds the optimal controls that
transfer a system from the initial state to the final state while minimizing (or maximizing) a specified cost
function.47 The optimal control aims to find a state-control pair x∗(), u∗() and possibly the final event time
tf that minimizes the cost function

J [x(), u(), t0, tf ] = E(x(t0), u(tf ), t0, tf ) +

∫ tf

t0

F (x(t), u(t), t)dt (23)

where x ∈ Rn and u ∈ Rm. The function E and F are endpoint cost and Lagrangian (running cost),
respectively. The minimization is subject to the dynamic constraint,

ẋ(t) = f(x(t), u(t)), t ∈ [t0, tf ] (24)
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and boundary conditions

ψ0[x(t0), t0] = 0 (25)

ψf [x(tf ), tf ] = 0 (26)

where ψ0 ∈ Rp and ψf ∈ Rq with p, q ≤ n. These boundary conditions are fixed with trimmed flight
conditions, but the rest of the maneuver is an out-of-trim condition. There are many different methods of
solving the optimal control problems; the optimal control solver of DIDO48 is used here. Note that DIDO is
not actually an acronym; the method is named for Queen Dido of Carthage who was the first person known
to have solved a dynamic optimization problem. This code has been widely used and tested for aircraft
optimal control problem. In DIDO, the total time history is divided into N segments, spaced using a shifted
Legendre-Gauss-Lobatto (LGL) rule.49, 50 The boundaries of each time segment are called nodes. The code
exploits Pseudo-Spectral (PS) methods for solving the optimal control problems. For the problem of an
aircraft optimal time maneuver, the general 6-DOF aircraft equations of motion detailed in Etkin51 serve as
one of the constraints. The aircraft state vector consists of the position of the aircraft (x, y, z), the standard
Euler angles (φ, θ, ψ), the velocity components in terms of Mach number and flow angles (M,α, β), and the
body-axis components of the angular velocity vector (p,q,r). A stability-derivative aerodynamic model was
used to model the aerodynamic loads needed for the aircraft equations of motion. The static and dynamic
derivatives might be obtained from solution of indicial functions at relatively long time after the excitation
of forcing parameters. For example, the lift coefficient can be obtained as:

CL = CL0(M) + CLα(t = ∞, α,M)α+ CLq(t = ∞,M)q + CLδp
δp (27)

where, CL0(M) is the trimmed lift coefficient at free-stream Mach number of M and CLδp
shows the pitch

control increments in lift coefficient, where the control derivatives for the test case are obtained from the
work of Vallespin et al.52

III. Test Case and Validation

A generic UCAV (Stability And Control CONfiguration, SACCON) shown in Fig. 2 is considered in this
paper. The SACCON geometry and experimental data were provided to the partners participating in NATO
RTO Task Group AVT-161 (Assessment of Stability and Control prediction Methods for NATO Air and Sea
Vehicles).53 The objective of this task group is to evaluate CFD codes against wind tunnel results. The
vehicle planform and section profiles were defined in cooperation between the German Aerospace Center
(DLR) and EADS-MAS. DLR adjusted the pre-design geometry for wind tunnel design purposes which
actually led to a higher overall thickness at the root chord to provide enough space for the internal strain
gauge balance. The aircraft has a lambda wing planform with a leading edge sweep angle of 53o as shown
in Fig. 2. The root chord is approximately 1 m, the wing span is 1.53 m, the reference chord is 0.48 m, and
the reference area is 0.77 m2. The main sections of the model are the fuselage, the wing section, and wing
tip. The configuration is defined by three different profiles at the root section of the fuselage, two sections
with the same profile at the inner wing, forming the transition from the fuselage to wing and the outer
wing section. Finally, the outer wing section profile is twisted by 5o around the leading edge to reduce the
aerodynamic loads and shift the onset of flow separation to higher angles of attack.

The wind tunnel model was designed and manufactured at NASA Langley Research Center (LaRC). The
model was designed to accommodate a belly sting mount for tests in the German-Dutch Low Speed Wing
Tunnel (DNW-NWB) at DLR in Braunschweig and the 14

′

×22
′

low speed wind tunnel at NASA LaRC. Two
meshes are available: the first uses a belly mounted sting present in the experiments and the second has no
sting. The meshes were generated in two steps. In the first step, the inviscid tetrahedral mesh was generated
using the ICEMCFD code. This mesh was then used as a background mesh by TRITET54, 55 which builds
prism layers using an advancing front technique. TRITET rebuilds the inviscid mesh while respecting the
size of the original inviscid mesh from ICEMCFD. These grids are shown in Fig. 3. and contain around 9M
points and 26M cells. CFD simulations were run on the Cray XE6 (open system) machine at the Engineering
Research Development Center (ERDC) [the machine name is Chugach with 2.3GHz core speed and 11,000
cores].
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The coefficients of lift, drag, and pitch moment are compared with experiments in Fig. 3. This figure
shows that the CFD predictions closely follow the trends of the experimental data up to moderate angles of
attack. The offsets in the low angle of attack pitch moment in the model is likely due to the effects of the
belly sting mounting present in the experiments.56 Some of the SACCON aerodynamic features are shown
in Fig. 4. Two emanating vortices from the wing tip and apex are present at 14o angle of attack (Fig. 4(a)).
These vortices lead to a negative pressure region on the upper wing surface and hence augment the lift force.
As the angle of attack increases from 16o, the onset point of the outboard vortex starts to travel toward the
wing apex due to increasing adverse pressure gradients. At 19.5o angle of attack, the vortices are already
interacting as shown in Fig. 4(b). Further increasing of the angle of attack causes the inboard vortex to start
to breakdown (Fig. 4(c)). At higher angles of attack the tip vortex also breaks down. The interaction of the
vortices produces a strong recirculation zone over the upper wing (Fig. 4(d)) and results in wing stall and
the aerodynamic center backward movement.

For CFD simulations of a maneuvering SACCON, the mesh without the sting geometry was used. Also
for the generation of SACCON maneuvers, the wind tunnel model was scaled up to fit the characteristics of
a full size aircraft if this were to fly. Initially, estimations of the mass and moments of inertia were made,
through work carried out in the NATO group, based on the Northrop YB-46 aircraft. Table 1 summarizes
the SACCON flyable geometry parameters and mass and inertia.

Table 1. Geometry parameters and Mass/Inertias of SACCON flyable model

Mean Aerodynamic Chord, c̄ (m) 5.011

Wing Area, S (m2) 55.0

Wing Span, b (m) 13.0

Ixx (kg.m2) 8014

Iyy (kg.m2) 6564

Izz (kg.m2) 8937

Maximum take-off weight, MTWO (kg) 2000

IV. Results and Discussion

From the ROM equations given above, the unsteady aerodynamic responses to a wide range of aircraft
maneuvers can be evaluated. These equations could predict the variations in the Mach number, angular
rates, incidence, and side-slip angles during flight maneuvers. For SACCON maneuvers, the incidence and
side-slip angles are in the range of -10 to 10 degrees with a maximum Mach number of 0.5. For surrogate
modeling of indicial functions, a set of samples including 33 points is defined on the α and M space using
factorial design. These points are uniformly spaced over α for Mach numbers of 0.1, 0.3, and 0.5 and are
shown in Fig. 5. Also, it is assumed that the aerodynamic forces and moments are symmetric about zero
degrees angle of attack and hence only the angles between zero and ten degrees are considered for response
function calculations although this probably is not correct.

In the present paper, the response functions are directly calculated from unsteady RANS simulations and
using a grid motion tool. All computations started from a steady-state solution and then advanced in time
using second-order accuracy. The motion files were generated for step changes in aircraft forcing parameters
(angle of attack, side-slip angle, and angular rates). These files define the rotations and displacements at
discrete time instants and Cobalt then interpolates motion data using cubic-splines and moves the grid for
each computational time step. The grid undergoes only translation motion for α and β responses, where the
relative velocity between grid and flow at each instant defines the angle of attack and side-slip. For angular
rate responses, the grid rotates and translates simultaneously. Again, a translation motion was used in order
to keep angles of attack and side-slip zero during rotations.

The indicial functions with respect to the angle of attack are calculated using the CFD and grid motion
approach for each sample conditions. In these simulations, the solution starts from a steady-state condition
with zero degrees angle of attack at a Mach number of Mi, and then iterates such that angle of attack is held
constant at αi for all t > 0, where Mi and αi correspond to samples shown in Fig 5, excluding the samples
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at zero degrees angle. In these calculations, the side-slip angle is zero degrees at all times and the grid does
not rotate at any time. The lift and pitch moment indicial responses to a unit step change in the angle of
attack, i.e. αi = 1, are shown in Figs. 6(a) and (b) for Mach numbers of 0.1, 0.3, and 0.5. The lift and pitch
moment are plotted against the nondimensional time s = 2V t/c, where V is the frees-stream velocity, t is the
response time, and c is the reference length. Figure 6(a) shows that the lift responses have a peak at s = 0.
Likewise, the pitch moment predicts a negative peak at this time as shown in Fig. 6(b). As the steady flow
around the vehicle is disturbed by the grid motion, a compression wave and an expansion wave are formed
on the lower and upper surface of the vehicle that cause a sharp peak in the responses.25 As the response
time progresses, the waves begin to move away from the vehicle and the lift and pitch moment responses
start to increase and then asymptotically reach the steady-state values. Figures 6(a) and (b) also show that
the initial peak becomes smaller for compressible flow. An explanation is given by Leishman;57 this is due to
the propagation of pressure disturbances at the speed of sound, compared to the incompressible case, where
the disturbances propagate at infinite speed.

The nonlinear indicial functions are generated using the response functions at different angle of attack
intervals. For example, to determine CLα(t, α) and Cmα(t, α) terms, the lift and pitch moment responses to
the angles of αi−1 and αi, are estimated using a surrogate model from available samples. These two angles
can be chosen by the user, but αi−1 < α ≤ αi should apply. The difference between these responses divided
by the interval length, i.e. αi − αi−1, results in the indicial functions at the interval. Figures 6(c) and (d)
show the interval lift and pitch moment responses at different angles of attack at Mach number of 0.3. These
figures show that the initial values of responses are invariant with angle of attack, but the transient trend
and steady state values change depending on the angle of attack. The changes in the indicial functions are
nearly small since the lift and pitch moment are in nearly linear regime of angle of attack.

The lateral loads response to a unit step change in the side-slip angle at different angles of attack are
shown in Fig. 7 for Mach number of 0.1, 0.3, and 0.5. In these simulations, the solution starts from a
steady-state condition at zero degrees side-slip angle and an angle of attack of αi at a Mach number of Mi,
and then iterates such that the side-slip angle is held constant to one degree and angle of attack is held
constant to αi for all t > 0, where Mi and αi correspond to the samples shown in Fig. 5. Likewise, for the
lift and pitch moment, the initial peaks in lateral responses become smaller for compressible flow. Figure 7
shows that side-force responses (Cyβ) remain almost unchanged with the changes in the angle of attack for
the range of angles studied. This figure shows that the yaw moment responses (Cnβ) slightly change with
the changes in the angle of attack, but significant differences are found for the roll moment. The differences
become more apparent as Mach number increases.

Typically, the angle of attack effects are negligible for the responses due to the angular rates at low to
moderate angles of attacks. Figures 8(a)-(b) show the lift and pitch moment responses respectively with
a unit step change in pitch rate for Mach numbers of 0.1, 0.3, and 0.5. Again there is an initial jump in
lift as grid starts to rotate which its value decreases as Mach number increases. The lift response starts
to fall a short time after initial excitation and then it reaches asymptotically a steady-state value, the so
called pitch dynamic derivative. Figures 8(a)-(b) show that increasing Mach number results in the slight
decrease of the lift and pitch damping derivatives. These calculations, along with a time-dependent surrogate
model, were used to estimate the functions of CLq(t,M) and Cmq(t,M) in the ROM equations. Also, the
indicial functions with respect to roll and yaw rates are shown in Figs. 9-10, respectively. These calculations,
along with a time-dependent surrogate model, were used to estimate the functions of CY p(t,M), Clp(t,M),
Cnp(t,M), CY r(t,M), Clr(t,M), and Cnr(t,M) in the ROM equations.

The ROM equations were used for prediction of two SACCON maneuvers: a half Lazy-858 and an
Immelmann turn.59 In both maneuvers, the aircraft enters and terminates the maneuver from a straight
and level condition. The maneuvers were generated using DIDO to minimize final maneuver time subject
to vehicle aerodynamics, mass properties, state and control constraints. The angle of attack and side-slip
angles are limited to [−10o, 10o] while the maximum Mach number is 0.5. Figure 11 shows that the Lazy-8
maneuver makes a 180o degree turn. The airplane starts a climb steeply to reduce flight speed as shown
in Fig.11-(b). This reduced speed helps to have a smaller radius turn and total traveled time.59 Next, the
airplane starts to roll as the pitch angle decreases, where at 90o yaw angle, the vehicle is at zero pitch and
maximum roll angle as shown in Fig.11-(d). This is followed by a descent trajectory and decreasing of roll
angle, increasing pitch angle, and regaining the speed until the vehicle reaches initial velocity and altitude.
The Immelmann turn as shown in Fig. 12 comprises a half loop with a half roll at the end. The maneuver
starts with a steep climb and thus decreases the speed as shown in Fig. 12-(b). At the maximum pitch angle,
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the aircraft heading suddenly changes from 0o to 180o, which makes the aircraft final flight path exactly
opposite of the initial path. As the heading starts to increase, the aircraft performs a half roll to level the
wing as shown in Fig. 12-(d). The final altitude is slightly higher than starting altitude as shown in Fig.
12-(a).

Figure 13 depicts the predicted aerodynamic loads of half Lazy-8 maneuver. The comparisons between
the created ROM with the full-order model shows good agreements in all coefficients. The predictions of
aerodynamic loads for the Immelmann turn are also shown in Fig. 14. Again, the ROM is in close agreement
with the full-order model for all coefficients. Note that the cost of generating each full-order model is
approximately 192 wall-clock hours using 256 processors (2.3 GHz), but the model predictions are generated
within a few seconds. Finally, the surface pressure distributions during maneuvers are shown in Fig. 15.
The leading edge vortex can be seen behind the leading edge on the upper wing around ten degrees angle of
attack during the maneuvers.

V. Conclusions

This paper investigates the use of ROMs that significantly reduce the CFD simulation time required
to create a full aerodynamics database, making it possible to accurately model aircraft static and dynamic
characteristics from a limited number of time-accurate CFD simulations. The ROM considered was based
on Duhamel’s superposition integral using indicial (step) response functions. The indical functions consist
of aircraft responses to step changes in the angle of attack, pitch rate, side-slip angle, roll, and yaw rates.
All these functions were calculated using direct response simulation in URANS with the aid of rigid grid
motion tool. A time-dependent surrogate model was described to find the response functions dependency
on the angles of attack and Mach numbers.

The test case used was the SACCON UCAV scaled up to fit the characteristics of a full size. Two time-
optimal maneuvers were generated using DIDO code to minimize final maneuver time subject to vehicle
aerodynamics, mass properties, state and control constraints. The comparison between unsteady simulation
of maneuvers with ROM predictions showed the consistency of predictions for all coefficients. The cost of
generating each full-order model was approximately 192 wall-clock hours, but the model predictions were
generated in a few seconds. The results give us confidence in the ability of response type CFD calculations
for aerodynamic loads modeling and hence to extend out this method for fast-rate maneuvers.

VI. Acknowledgements

Mehdi Ghoreyshi was supported by the National Research Council/US Air Force Office of Scientific
Research. Their financial support is gratefully acknowledged. Acknowledgements are expressed to the
Department of Defense Engineering Research Development Center (ERDC) for providing computer time.
The SACCON geometry was provided by NATO RTO Task Group AVT-161 on Assessment of Stability and
Control Prediction Methods for NATO Air & Sea Vehicles. The authors appreciate the support provided by
the Modeling and Simulation Research Center at USAFA.

References

1Pamadi, B. N., Performance, Stability, Dynamics, and Control of Airplanes, AIAA Education Series, Second Edition,
Reston, VA, USA, 2004.

2Chambers, J. R. and Hall, R. M., “Historical Review of Uncommanded Lateral-Directional Motions at Transonic Condi-
tions,” Journal of Aircraft , Vol. 41, No. 3, 2004, pp. 436–447.

3Hall, R. M., Woodson, S. H., and Chambers, J. R., “Accomplishments of the Abrupt-Wing-Stall Program,” Journal of

Aircraft , Vol. 42, No. 3, 2005, pp. 653–660.
4Hall, R. M., “Overview of the Abrupt Wing Stall Program,” Progress in Aerospace Sciences, Vol. 40, No. 7, 2004,

pp. 417–452.
5Liebe, R., Flow Phenomena in Nature: A Challenge to Engineering Design, WIT Press, Southampton, Great Britain,

2007.
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(a) grid without sting geometry. (b) grid with sting geometry.
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Figure 3. The SACCON grids and static predictions at M∞=0.144 and Re = 1.61 × 106.
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(a) α = 140 (b) α = 19.50

(c) α = 20.50 (d) α = 230

Figure 4. The SACCON vortical flows using SA turbulence model. The conditions are : M∞=0.144 and
Re = 1.61 × 106. The vortices core lines are extracted and shown by black lines. For case (d), the flow
separations lines are shown by red lines.

16 of 25

American Institute of Aeronautics and Astronautics



Mach

A
ng

le
of

at
ta

ck
,α

(D
E

G
)

0 0.1 0.2 0.3 0.4 0.5 0.6

0

2

4

6

8

10

Figure 5. Design space samples.

s = 2Vt/C

C
L

α
(1

/r
ad

)

0 1 2 3 4
-5

0

5

10

15

20

25

30
Mach = 0.1
Mach = 0.3
Mach = 0.5

s = 2Vt/C

C
m

α
(1

/r
ad

)

0 1 2 3 4
-10

-5

0

5
Mach = 0.1
Mach = 0.3
Mach = 0.5

(a) linear CLα functions (b) linear Cmα functions

s = 2Vt/c

C
L

α
(1

/r
ad

)

0 1 2 3 4
0

2

4

6

8

10

α = 1o

α = 6o

α = 8o

α = 10o

s = 2Vt/c

C
m

α
(1

/r
ad

)

0 1 2 3 4
-2

-1

0

1

2

α = 1o

α = 6o

α = 8o

α = 10o

(c) nonlinear CLα functions at M=0.3 (d) nonlinear Cmα functions at M=0.3

Figure 6. The lift and pitch moment indicial functions.
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Figure 7. The side-force, roll and yaw moments indicial functions.
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Figure 9. The lateral coefficients with a unit step change in the normalized roll rate.
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Figure 10. The lateral coefficients with a unit step change in the normalized yaw rate.
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Figure 11. Half lazy-8 maneuver.
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Figure 12. Immelmann turn maneuver.
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Figure 13. Aerodynamic modeling of half lazy-8 maneuver.
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Figure 14. Aerodynamic modeling of Immelmann turn maneuver.
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(a) Half Lazy-8.

(b) Immelmann turn.

Figure 15. Surface pressure solutions during Lazy-8 and Immelmann Turn maneuvers.
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