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Abstract 
 
The low-speed, laminar flowfield for a 70o-sweep 
delta wing is investigated.  Solutions to the unsteady, 
three-dimensional, compressible Navier-Stokes 
equations were obtained on an unstructured grid to 
match results from an experiment performed in a 
water tunnel.  The experiment was conducted with 
the delta wing at an angle of attack of 35o and the 
freestream flow at a root-chord Reynolds number of 
40,700.  The computational results are analyzed and 
compared with the experimental results in order to 
show how computations and experiments can be 
conducted in a synergistic fashion.  Details about the 
primary vortex location, vortex burst, secondary 
vortex, and shear layer interaction are shown and 
discussed. 
 

Nomenclature 
 
b Local wing span  
c Wing root chord, 298 mm 
Cµ  Oscillatory momentum coefficient, 

2(H/c)(〈v'〉/U∞)2 
f Frequency 
F+ Nondimensional frequency, fc/U∞ 
H Forcing slot height, 1.5 mm 
M Mach number 
Re Reynolds number, U∞c/υ∞ 

St Strouhal number, fc/U∞ 
t Time 
T Period of blowing and suction cycle, 

1.352 s 
u, v, w  Velocity components along x, y, z axes 
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〈v'〉   R.M.S. amplitude of blowing velocity  
U∞  Freestream velocity, 0.126 m/s 
x, y, z Cartesian coordinates fixed to the wing 
α  Wing angle of attack, 35o 
υ                Kinematic viscosity  
∞  Freestream conditions 
 

Introduction 
 
The need to improve fighter aircraft and missile 
maneuverability has inspired extensive study of the 
flow past a variety of geometries, including delta 
wings and fuselage forebodies (see Refs. 1 and 2 for 
example).  In addition, numerous studies have 
centered on methods to delay or control vortex 
breakdown, which include a variety of blowing, 
suction, and various combinations of other 
pneumatic flow control concepts.3-8  In recent years, 
the efficacy of oscillatory flow excitation with zero 
net mass flux and non-zero momentum flux has 
been shown.  Oscillatory flow oscillation is more 
effective for delaying separation from a lifting 
surface or promoting reattachment of initially 
separated flow, relative to steady blowing methods 
traditionally used for this purpose. 
  
Guy, et al.,9-13 have recently experimented with 
oscillatory flow excitation at the leading edge of a 
delta wing.  They have investigated the spatial 
effects of periodic suction and blowing (PSB) on 
delta wing vortex breakdown by wind tunnel and 
water tunnel experimentation.  The investigation 
focused on extending the aerodynamic envelope of a 
70o-sweep delta wing by active control of the 
vortical flow over the wing.  It was shown that 
periodic suction and blowing delays vortex 
breakdown and wing stall, and increases lift at high 
angles of attack.  Key control parameters were 
defined and optimum values of these parameters 
were established.  The experimental investigation 
indicates that periodic suction and blowing delays 
vortex breakdown by approximately 0.2 chord 
lengths, delays stall by approximately 10o, and 
increases lift by 40% at an angle of attack of 40o. 
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Following these encouraging results, a continuation 
of the research was undertaken at the USAF 
Academy.  It was aimed at giving an in-depth 
understanding of the mechanism through which 
periodic suction and blowing affects the structure 
and behavior of the leading edge vortex.  A first step 
in this direction was taken by Morton, et al.,13 who 
numerically simulated the flow about a delta wing 
with and without periodic suction and blowing.  
More recent studies have also been conducted in a 
water tunnel at the USAF Academy, which form the 
basis for this article.14 The purpose of this 
investigation is to determine how well numerical 
simulations of the delta wing flowfield with and 
without leading-edge blowing and suction can match 
experimental measurements.  Specifically, the 
eventual goal is to show how computations can aid 
in improving the experimental method by giving 
insight into details about the flowfield that can aid 
experimentalists in designing their measurements to 
best take advantage of limited apparatus and time. 
 

Computational Method 
 
The unstructured flow solver Cobalt was chosen 
because of its speed and accuracy; Cobalt is a 
commercial version of Cobalt60.  Cobalt solves the 
Navier-Stokes equations, including an improved 
spatial operator and improved temporal integration.  
The code has been validated on a number of 
problems, including the Spalart-Allmaras model 
(which forms the core of the DES model).15  Tomaro, 
et al., converted Cobalt60 from explicit to implicit, 
enabling CFL numbers as high as one million.16  
Grismer, et al., then parallelized the code, yielding a 
linear speedup on as many as 1024 processors.17  
Forsythe, et al., provided a comprehensive testing 
and validation of the RANS models, including the 
Spalart-Allmaras, Wilcox k-ω, and Menter's 
turbulence models.18 
   
A previous numerical study computed the flow over a 
flat-plate, semi-span delta wing with a leading-edge 
sweep of 70o and a 25o bevel on the lower surface in 
a wind tunnel.19-20  The wing had a root chord of 0.74 
m with a 3 mm slot extending the entire length of the 
leading edge.  The results of the wind tunnel 
experiment showed a significant impact of periodic 
blowing and suction, which led to additional 
experiments in a water tunnel, and eventually to a 
desire to numerically model the water tunnel 
experimental results. 
   
Solutions to the unsteady, three-dimensional, 
compressible Navier-Stokes equations with a 
laminar-flow assumption were obtained on two 

unstructured grids—details for the study may be 
found in Ref. 21.  Grids from the wind tunnel 
computations were first modified to match the water 
tunnel model root chord of 0.298 m.  A semi-span 
coarse grid was used that contained 133,000 points 
and 591,000 cells, and the fine grid contained 
252,000 points and 1.24 million cells.  
Approximately 10% of each grid was made up of 
prisms near the surface, while the remaining cells 
were tetrahedra.  Results from both grids will be 
shown and discussed.  Solutions were obtained at an 
angle of attack α = 35o, with and without periodic 
suction and blowing through the leading-edge slot.  
Blowing and suction was applied normal to the 
leading edge and parallel to the upper surface of the 
wing from a slot of height, H = 1.5 mm.  The 
experimental free stream velocity was 0.126 m/s and 
the corresponding root-chord Reynolds number was 
40,700.  The freestream Mach number for the 
computations was set to M∞ = 0.1, with the freestream 
pressure and temperature chosen to match the 
Reynolds number of the experiment.  Periodic 
blowing and suction was applied at a non-
dimensional frequency of F+ = 1.75 and the 
momentum coefficient was Cµ = 0.004—these values 
matched those used in the water tunnel experiment.  
The grids were used to obtain solutions for the case 
without blowing after running the solution for 4000 
to 5000 iterations to insure that all start-up 
instabilities were damped out.  The periodic blowing 
and suction solutions were started from the well 
established non-blowing solutions. 
 

Experimental Setup 
 
A flat-plate delta wing with a leading-edge sweep of 
70o and a 25o bevel on the lower surface, was 
investigated in the USAF Academy 38 cm × 110 cm 
free-surface water tunnel.  The wing has a chord 
length of 298 mm, is hollow and has a 1.5 mm slot 
along its leading edge.  The wing was sting-mounted 
and placed inverted at an angle of attack of 35o in the 
water tunnel. 
  
To perturb the shear layer originating at the leading 
edge of the delta wing, a semi-spherical rubber cap 
was used as an oscillatory blowing and suction flow 
actuator.  It was moved back and forth by a 
connecting rod, eccentrically mounted on a disk that 
was driven by a 560 W DC motor.  The water 
displacement produced by the moving cap was 
channeled through a tube 2 cm in diameter to the 
hollow wing and to the length of the slot in its 
leading edge.  With this setup, as with any oscillatory 
flow control method, fluid is drawn into the actuator 
over half of the sinusoidal cycle, and ejected over the 



other half (V = Vo sin ωt).  The phase during the 
forcing cycle is determined by the position of the 
rotating disk flywheel, which features an adjustable 
optical pickup to synchronize the data acquisition 
with a particular phase of the forcing cycle.  A 
forcing cycle starts at 0° with the blowing phase 
which extends to 180°.  The suction portion between 
180° and 360° completes the cycle. 
  
To sample the flow, a Dantec Flowmap two-
component PIV system with a New Wave Gemini 
125 mJ Nd:Yag laser operating at 532 nm was used.  
A Kodak Megaplus ES 1.0 CCD camera (1000 × 
1000 pixel resolution) was mounted downstream of 
the delta wing, to visualize the flow in a plane 
perpendicular to the model suction surface.  A special 
plexiglass viewing box was used to facilitate viewing 
of planes perpendicular to the wing, avoiding the 
inherent refraction from the water surface.  For 
measurements in a plane at a constant spanwise 
location, the laser was set up below the test section 
illuminating the flow from below, while the camera 
imaged the flow through the side window. 
  
The operating parameters for the PIV system were 
kept constant throughout the study.  Seeding was 
provided using 20 µm Polyethylene particles.  The 
system operated in cross correlation mode using two 
images, which were correlated in the frequency 
domain.  Before correlation, a 3 × 3 Low pass filter 
was used to widen the particle images.  A 32 × 32 
pixel interrogation area was used, and the images 
were processed with 75% overlap yielding a raw 
vector field of 123 × 123 vectors.  The vector 
acceptance criteria were a peak ratio of at least 1.2, 
and 25% maximum velocity variation from 
neighboring vectors. 
  
PIV images were phase-referenced to the forcing 
mechanism, to allow phase averaging of ten images, 
thus increasing signal-to-noise ratio of the data.  Data 
sets were obtained every ten degrees through the 
360° forcing cycle.  Basic data reduction was done 
using the Flowmap PIV software for vector 
validation, spatial moving average smoothing in a 3 × 
3 vector area and averaging of the ten data sets.  The 
data was then imported into LabVIEW-based post 
processing software for further data reduction and 
analysis.  Details of the results of this study can be 
found in Ref. 14. 
 
 
 
 
 
 

Results and Discussion 
 
Spatial and Temporal Convergence Study  
 
In order to determine the appropriate grid density and 
time step for the numerical simulations, a study was 
carried out for the highly unsteady flowfield caused by 
the burst vortices above the delta wing at α = 35o.  
Details about the convergence study may be found in 
Ref. 21.  Solutions for the delta wing using the coarse 
grid were obtained at various time steps, including ∆t  = 
0.020, 0.010, 0.005, and 0.0025.  The power spectrum 
density of the normal force from the coarse grid solutions 
were obtained using MATLAB and plotted in Fig. 1.  
The four time steps shown each produce a different 
primary frequency (shown as the wave number, which is 
the inverse of the Strouhal number).  Clearly, the 
dominant unsteady features of the flow are not properly 
resolved if each time step yields a different vortex 
frequency.  In order to determine whether or not a 
converged time step is being approached, the log of the 
wave number for each time step is plotted against the log 
of the time step in Fig. 2.  Notice that a secondary 
frequency becomes apparent as the time step is 
decreased; the cause of the secondary frequency will be 
discussed later.  While the smallest time steps show 
convergence, the coarseness of the grid probably will not 
allow for all flow features to be captured. 
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Figure 1.  Power spectrum density for coarse grid 

at various time steps. 
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Figure 2.  Wave number variation with time step 

for the coarse grid. 
 
A similar study was then conducted using the fine 
grid.  Power spectrum densities for four of the time 
steps (starting with values comparable to those used 
for the coarse grid) are shown in Fig. 3.  The 
computations were all performed for the same 
physical time (10 seconds) by varying the number of 
iterations for each time step (2500 iterations for ∆t = 
0.004, 5000 iterations for ∆t = 0.002, etc.), and each 
computation was completed with two Newton sub-
iterations.  The detail of the frequency spectrum is 
more complex for the fine grid when compared with 
the coarse grid, as evidenced by the multiple power 
spikes in the vicinity of the primary frequency 
(compare Fig. 3 with Fig. 1). 
  
These results are consolidated and shown as a 
function of time step and number of subiterations in 
Fig. 4.  As can be clearly seen, both the primary and 
secondary frequencies converge to a constant value 
as the time step decreases.  In addition, the converged 
frequencies are the same as those achieved with the 
coarse grid (see Fig. 2), which means that the fine 
grid resolution is more than adequate for resolving 
the essential features of the flowfield.  A notable 
feature is that the non-dimensional frequency of the 
blowing and suction is 1.75 (which corresponds to a 
wave number of 0.571), which lies between the 
primary and secondary frequencies for the non-
blowing flowfield; the flow features associated with 
the blowing should therefore be well modeled with 
this grid and time step. 
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Figure 3.  Power spectrum density for fine grid at 
various time steps and two Newton subiterations. 
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Figure 4.  Wave number variation with time step 

and number of subiterations for the fine grid. 
 
An additional time convergence study was then 
performed to determine the effect of the number of 
Newton subiterations on the solution.  Figure 4 also 
shows the wave number for five Newton subiteration 
levels (nsub = 1, 2, 3, 4, and 5), all at a time step of 
∆t = 0.00005.  Once again, two dominant frequencies 
can be seen, with the wave number for both the 
primary and secondary frequencies decreasing with 
increasing number of Newton subiterations.  In fact, 
the secondary frequency seems to have nearly 
converged, while the primary frequency is very 
nearly converged at nsub = 4.  These studies (time 
step and Newton subiteration) have shown that the 
essential features of the flowfield are appropriately 
modeled with a time step of ∆t = 0.00005 and a 
Newton subiteration level of nsub = 3.  All remaining 
comparisons for non-blowing cases will be made for 



computations made at these conditions.  Certainly, 
slightly improved solutions would be obtained by 
using ∆t = 0.00001 and nsub = 3; these conditions are 
used for the following periodic suction and blowing 
cases.  Using these values the flow exhibits a primary 
frequency of approximately 1.3 and a secondary 
frequency of approximately 6.0.  The following 
discussions will attempt to determine the causes of 
these frequencies. 
 
Primary and Secondary Vortex Frequencies 
 
In order to determine the cause of the frequencies 
seen in Fig. 3, “pressure taps” were placed in the 
computational flowfield along the cores of the 
primary and secondary vortices.  In both cases, the 
taps were located both before and after observed 
breakdown locations.  Figure 5 shows the frequency 
history for six pressure taps along the core of the 
primary vortex, and Fig. 6 shows the frequency 
history for six pressure taps along the secondary 
vortex.  Tap #1 is located nearest to the vertex of the 
delta wing, and Tap #6 is beyond the vortex 
breakdown location (see Table 1 for the longitudinal 
locations of the pressure taps).   
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Figure 5.  Numerical prediction pressure histories 

along the core of the primary vortex (Tap #1 is 
closest to the delta wing vertex). 

 
As can be seen in Fig. 5, the pressure frequencies 
increase in average values as the tap locations move 
further aft, showing the adverse pressure gradient 
normally seen on the upper surface of a wing.  The 
frequency content at each tap location also changes 
with tap position as well.  There is no dominant 
frequency for the first three pressure tap locations on 
the primary vortex (Taps #1 through #3).  However, a 
PSD analysis of the pressure variations for Taps #4 
through #6 showed that the primary non-dimensional 

frequency is approximately 8.5.  After breakdown a 
different pressure history is seen, with the primary 
non-dimensional frequency decreasing to 
approximately 1.35.  These frequencies were 
confirmed with animations of the flowfield, and 
match the shedding evident from the leading edge 
and the winding of the vortex after breakdown (F+ = 
1.35). 
 
Figure 6 shops the pressure histories along the 
secondary vortex.  The most forward tap (Tap #1) 
along the secondary vortex shows pressures that are 
comparable to those seen in the primary vortex 
(compare Tap #1 in Fig. 6 with Tap #1 in Fig. 5).  
However, as the secondary vortex passes through Tap 
#2, #3, and #4, there is a fairly significant drop in 
pressure.  This pressure drop is also accompanied by 
a noticeable instability in the pressure—the 
instability becomes more evident as the flow passes 
from Tap #2 to Tap #4.  Finally, a noticeable 
difference can be seen as the flow reaches Taps #5 
and #6.  The flow has become more chaotic, with 
large variations in pressure.  PSD analysis shows that 
Tap #4 has a strong frequency spike at F+ = 8.5, 
which matches well with the frequencies found on 
the primary vortex.  Taps #5 and #6 do not show any 
single, dominant frequency however.  When movies 
of the flowfield are viewed it becomes apparent that 
the secondary vortex dissipates quickly and is 
diffused into the surrounding fluid, which may 
explain the lack of dominant frequencies at Taps #5 
and #6. 
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Figure 6.  Numerical prediction pressure histories 
along the core of the secondary vortex (Tap #1 is 

closest to the delta wing vertex). 
 
 
 
 



Tap # Primary Vortex 
Tap x/c 

Secondary Vortex 
Tap x/c 

1 .0196 .0192 
2 .1655 .1412 
3 .1812 .1774 
4 .2713 .1812 
5 .3350 .3350 
6 .3668 .3624 

 
Table 1.  Longitudinal location of numerical 

pressure taps. 
 

When this information is coupled with the flowfield 
visualization in Fig. 7 the results become more clear.  
While the primary vortex breaks down and winds at 
an easily verifiable non-dimensional frequency of F+ 
= 1.35, the secondary vortex also breaks down—in 
fact, the secondary vortex breakdown location is 
forward of the primary vortex breakdown.  This 
seems to suggest that the secondary vortex 
breakdown, and whatever may be causing it, is 
actually causing or affecting the primary vortex 
breakdown. 

 
Figure 7.  Secondary vortex breakdown and the 

secondary frequency. 
 
This phenomenon has been previously observed in 
water tunnel experiments (Ref. 22), Figure 8 shows 
the results of the water tunnel test on a blade wing at 
α = 27o, clearly showing the secondary vortex 
bursting well upstream of the primary vortex. 

 

 
 

Figure 8.  Interaction between secondary vortex 
and primary vortex (from Ref. 22). 

Wing Leading Edge Shedding Frequency 
 

Delta wing leading edge shedding has been studied by, 
among others, Gad-el-Hak & Blackwelder who used a 
60 degree delta wing (Ref. 23) and Lowson who used a 
70 degree delta wing (Ref. 24).  Both of these studies 
resulted in collection of shedding frequency data as a 
function of flow speed, as well as the creation of 
empirical curve-fits of the Strouhal number for the 
shedding frequency.  Gad-el-Hak & Blackwelder 
obtained a relation based on data collected between 
Reynolds numbers between 12,500 and 35,000 

Re/1625/ =∞Ufc  
and Lowson obtained data for Reynolds numbers 
between 6,640 and 16,600  

Re/2577/ =∞Ufc  
The experimental data and empirical curve-fits are 
shown in Fig. 9.   While the present computations are for 
a delta wing with a 70 degree sweep angle (which 
matches Lowson’s experiment), the angle of attack is 
higher than either of the experimental results.  Gad-el-
hak & Blackwelder noted that the shedding frequency 
was not a function of leading edge sweep angle or 
leading edge shape, but did find that the frequency was a 
weak function of angle of attack, with the frequency 
decreasing with α.  The computational leading-edge 
shedding frequency Strouhal number of approximately 
6.0 compares well with the experimental results.  This 
frequency matches the frequency of the secondary vortex 
breakdown observed previously. 
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Figure 9.  Comparison of numerically predicted 

leading edge shedding frequency with 
experimental data and empirical relationships 

(experimental data from Refs. 23 and 24). 
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Cause of Secondary Frequency 
 
The secondary frequency predicted with both the 
coarse and fine grids (Figs. 1 and 3, respectively) was 
assumed to be caused by the breakdown of the 
secondary vortex.  This breakdown takes place at 
approximately the same longitudinal location as the 
primary vortex breakdown (actually slightly ahead, as 
seen in Fig. 7), but with a frequency approximately 
five times higher than the frequency caused by the 
primary vortex windings.  It should be noted that the 
frequency information used in this analysis was taken 
from the integrated normal force acting on the delta 
wing, with the primary frequency being caused by the 
wound vortical structures of the primary vortex as 
they convect downstream beyond the breakdown 
location.  The pressure taps resulted in a frequency of 
approximately F+ = 8.5, slightly higher than the value 
of F+ = 6 found from the integrated normal force 
predictions. 
 
Further investigation showed that the secondary 
vortex breakdown is actually directly related to the 
leading-edge shear layer instability.  Figure 10 shows 
the interaction between the shear layer, the secondary 
vortex, and the primary vortex, including the primary 
vortex burst location. The “fingers” of the shear-layer 
instability directly match the flow structures in the 
secondary vortex breakdown region as seen in Fig. 7.  
The visualizations shown here (see Figs. 7, 8, and 10) 
help to explain the interaction of the various portions 
of the flowfield—the leading-edge shedding 
frequency interacts with both the primary and 
secondary vortex, causing the secondary vortex to 
breakdown.  The instability of both the shear-layer 
shedding and the secondary vortex breakdown appear 
to interact with the primary vortex and contribute to 
the breakdown of that vortex.  Certainly, no absolute 
cause and effect relationships can be deduced by the 
results shown above, but the evidence seems strong 
that the three flow structures are inextricably linked. 

 

 
 

Figure 10.  Interaction between shear layer, 
secondary vortex, and primary vortex. 

Unforced Flowfield Results 
 
Figure 11 shows the experimental average vorticity 
without periodic suction and blowing in a crossflow 
plane located at x/c = 0.4 (just prior to vortex burst).  
The primary and secondary vortices are visible, with 
the highest vorticity visible near the center of the 
primary vortex.  (2z/b = 0.37 and 2y/b = 0.62). 
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Figure 11.  Experimental average vorticity 

without forcing at x/c = 0.4. 

Figure 12 shows the computational equivalent of the 
experimental results presented near the wing-tip in 
Fig. 11.  High vorticity is seen in the shear layer at 
the sharp leading-edge, with the primary vortex 
clearly wrapping up from the shear layer.  The 
secondary vortex is also visible under the primary 
vortex (colored in blue due to its clockwise rotation).   
 

 
 

Figure 12.  Computational velocity vectors colored 
by x-vorticity without forcing at x/c = 0.4. 



Figure 13 shows a number of crossflow planes 
colored by x-vorticity and the delta wing surface 
colored by pressure.  The first two crossflow planes 
(x/c = 0.17 and x/c = 0.42) show coherent vortices, 
but the final two planes (x/c = 0.67 and x/c = 1.0) 
clearly show that vortex breakdown has taken place. 
 

 

Figure 13.  Computational crossflow planes of 
x-vorticity located at x/c = 0.17, 0.42, 0.67, and 

1.0.  Delta wing surface colored by pressure. 
 
A comparison of the unforced vortex core velocities with 
those from the computations is shown in Fig. 14.  The 
experiment shows the vortex burst taking place from x/c 
= 0.35 to x/c = 0.4, while the instantaneous computation 
shows the burst taking place approximately 10% of the 
wing chord further aft.  It should be noted that the 
computation for this case is highly unsteady, and the 
burst location is moving fore and aft on the wing.  The 
computational results shown here are for one instant in 
time. 

x/c

U
/U

in
f

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

1

1.5

2

2.5

Computation

Experiment

 

Figure 14.  Computational and experimental axial 
velocity development along the vortex core 

(unforced).  

Periodic Suction and Blowing 
 
The experiment attempted to model the periodic suction 
and blowing as shown in Fig. 15 and given by 

)sin( tVV o ω=  

The flowfield that results from this disturbance is 
hopefully altered in such as way as to increase the lift on 
the delta wing at high angles of attack.   
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Figure 15.  Ideal sinusoidal suction and blowing. 
 
Once the periodic suction and blowing is begun the 
primary vortex begins to move around as vortices 
created by the suction and blowing interact with the 
primary vortex.  The experimental location of the 
primary vortex center throughout a forcing cycle is 
shown in Fig. 16.  Also included is the computational 
result for the no PSB location of the vortex core.  The 
vortex core location was determined using an 
algorithm contained with the Fieldview post-
processing software.  The location matches the 
experimental value to within 4% of the local wing 
span, which we consider to be a very good 
simulation.  The unforced vortex core location was 
taken from a single time step in the solution, and 
since the x/c = 0.4 axial plane is very near to the point 
of vortex burst, this location of the vortex core in the 
computations is unsteady. 
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Figure 16.  Experimental location of main 

vortex center during the forcing cycle.  x/c = 
0.4, phase averaged data over 10 forcing cycles. 

Figure 17 shows the change in the vortex at x/c = 
0.4 as a function of the blowing cycle.  Recall that 
a phase of 90o represents full blowing, while a 
phase of 270o represents full suction.  During the 
blowing phase, the leading-edge shear layer is 
canted to the right and the vortex core is drawn to 
the right.  Evidence of a shear layer vortex 
forming is evident as well.  By the time the 
suction phase has reached its peak, the vortex core 
has moved back to the left, as the shear layer is no 
longer being affected by the suction to any great 
extent.

              
 
 

              
 

Figure 17.  Computational prediction of vortex during the forcing cycle.  x/c = 0.4. 



The experimental velocity along the vortex core 
shown in Fig. 18 indicates that for the unforced case 
a stagnant or slightly reversed flow develops around 
x/c = 0.4. This coincides with the location at which 
the vorticity in the unforced flow drops, between x/c 
= 0.4 and x/c = 0.5. For the forced flow, however, the 
location of a drop in axial velocity is dependent on 
the phase within the forcing cycle. For two of the 
phase angles investigated, 130° and 170°, no stagnant 
flow can be observed over the entire wing. At these 
phase angles, the shear layer vortex generated by the 
forcing is present in the flow. In the absence of the 
shear layer vortex, at phase angles of 50° and 290°, 
the forced flow does show a significant drop in axial 
velocity, at locations of x/c = 0.45 and 0.55, 
respectively. One possible explanation for this 
behavior is that the shear layer vortex entrains fluid 
with high axial momentum from outside the wake left 
from the main vortex breakdown and thus increases 
the axial velocity. This would explain the decreased 
surface pressure found by Guy, et al., extending well 
downstream of their observed vortex breakdown 
location of x/c = 0.75.  
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Figure 18. Experimental axial velocity 

development along the vortex core. 

The experimental velocity profiles normal to the 
wing surface shown in Fig. 19 indicate that at x/c = 
0.60 the axial velocity near the wing surface is higher 

even for phase angles (50° and 290°) in which a large 
decrease in axial velocity can be found upstream of 
this location. While the decrease in axial velocity is 
almost as large or even larger than for the unforced 
case, it is shifted about 0.05 chords away from the 
wing surface. Therefore higher velocity fluid is close 
to the wing, increasing the local velocity and 
presumably decreasing the surface pressure. This 
explains the total increase in normal force found in 
previous studies.  
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Figure 19. Experimental axial velocity 

profiles at x/c = 0.6. 
 
One of the purposes of conducting a numerical 
simulation of the periodic suction and blowing is to 
determine information that would be unavailable in most 
experimental settings.  The PIV experiment determined a 
great deal of information, but the computational results 
add to that information, and perhaps better inform future 
experiments.  Figure 20 shows crossflow planes at x/c = 
0.6, which adds to the understanding of the experimental 
results in Fig. 19.  The blowing phase of the PSB cycle is 
able to reestablish the primary and secondary vortex 
structure to some extent, enabling the higher velocity 
fluid to remain closer to the surface of the wing.  



               

               
 

Figure 20.  Computational prediction of vortex during the forcing cycle.  x/c = 0.6. 

Figure 21 shows the normal force acting on the delta 
wing.  Initially the periodic suction and blowing is turned 
off (unforced case), and at approximately 29,800 
iterations the periodic suction and blowing is initiated.  
There are a variety of interesting details that can be seen 
when comparing the two cases.  As the periodic suction 
and blowing is initiated the average normal force acting 
on the delta wing increased from 0.945 N to 0.987 N—
just under a 5% increase in normal force.  In addition, the 
unforced case has a fairly low primary non-dimensional 
frequency of F+ = 0.221, which is caused by the winding 
of the burst vortex.  The primary frequency increases to 
F+ = 1.75 when the periodic suction and blowing is 
initiated, which is the frequency of the suction and 
blowing.  While the forced case seems to provide 
improved lifting characteristics (on the average), in fact 
the fluctuations in normal force also increase as the 
suction and blowing is initiated.  Peaks in normal force 
as high as 1.15 N can be seen in Fig. 21, but valleys as 

low as 0.8 N are also visible.  Whether this represents an 
improvement in wing lifting characteristics is open to 
debate.  The highly oscillatory nature of the forced case 
might make periodic suction and blowing impractical for 
everyday use unless some method controlling the force 
variations is determined. 
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Figure 21.  Normal force variation as periodic suction 
and blowing is initiated. 

The double frequencies for the converged PSB case are 
easily seen in Fig. 22, which shows the normal force 
variation for 17,000 iterations (over ten cycles of the 
suction and blowing).  Both the suction and blowing 
frequency is obvious, but overlayed on that frequency is 
the shear-layer instability frequency, constantly 
oscillating around the lower frequency.  The average 
normal force is now 0.921 N, which is even lower than 
the unforced case.  This difference may be due to the 
different time steps used and should not be used to draw 
conclusions.  Notice that the blowing portion of the 
suction/blowing cycle is more effective, as evidenced by 
the amount of time the normal force remains at the 
highest levels.  When the suction cycle takes place, 
decreasing the normal force, the force spikes to a 
minimum value but then quickly rises again as the 
suction phase ends.  This explains why, during the 
experimental portion of this work, it appeared that the 
suction was incomplete (or possibly working 
incorrectly).  Even the numerical simulation clearly 
shows that the suction phase is not as effective in altering 
the normal force acting on the delta wing. 
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Figure 22.  Normal force variation for periodic 
suction and blowing, ∆t*=0.006. 

 
Closeups of the flowfield in the vicinity of the slot help 
to explain the results of Fig. 22.  Figure 23 shows 
velocity vectors colored by x-vorticity for two phases of 
the PSB cycle.  It is clearly evident that the blowing 
phase is affecting a large change to the velocity field in 
the vicinity of the slot, while the suction phase is not 
nearly as affective.  This is probably due to the difficulty 
the suction has in forcing the crossflow to turn the corner 
into the slot, while the blowing is enhancing the upward 
direction of the crossflow. In fact, the suction seems to 
turn more air upward than into the slot.  Future slot 
configurations should take this into account. 
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Figure 23.  Velocity vectors in the vicinity of the slot 

colored by x-vorticity, x/c = 0.6. 
 

Conclusions 
 

The flow over a 70° delta wing at a chord Reynolds 
number of 40,700 and an angle of attack of 35° was 
investigated in a water tunnel experiment and by a 
numerical simulation. The flow was forced using 
periodic suction and blowing along the entire leading 
edge at a non-dimensional frequency of F+ = 1.75. It 
was found that periodic suction and blowing does not 
delay vortex breakdown a great deal, with vortex 
breakdown taking place between x/c = 0.4 and 0.5 for 
both the forced and unforced case, as evidenced by a 
drop in vorticity by almost an order of magnitude. 
For the unforced flow the location of the drop in 
streamwise vorticity was found to coincide with a 
drop in axial velocity. For the forced flow the 
location where the axial velocity dropped abruptly 
was fluctuating throughout the forcing cycle between 
x/c = 0.45 and downstream of the trailing edge.  The 
forcing resulted in an overall increase in axial 
velocity in the vortex core near the wing surface, 
especially beyond vortex breakdown. 
 
Since forcing does not appear to improve the flow 
upstream of vortex breakdown, future experiments 
are planned to investigate the effect of forcing along 
portions of the leading edge instead of the entire 
leading edge. Also, forcing methods that may 
improve the location of vortex breakdown by altering 
the shape of the vortex core from straight to curved 
by using spatially modulated forcing upstream of the 
natural vortex breakdown location are being 
considered.   

A critical examination of the results obtained from a 
numerical simulation of the flow field on a delta wing 
with periodic suction and blowing was also 
presented. The results indicate that the computational 
scheme properly captured the effect of periodic 
suction and blowing on the main parameters of the 
flowfield and on the normal force of the delta wing.  
The numerical results enabled the researchers to 
investigate a variety of flowfield details that were not 
known from the experiments, including the frequency 
of the vortex breakdown winding, the incremental 
change in normal force on the delta wing due to 
periodic suction and blowing, the oscillatory behavior 
of the force acting on the delta wing, and the impact 
of the periodic suction and blowing on the burst 
vortex winding frequency.  In addition, the numerical 
simulation was suggested as a method to verify 
difficulties in the experiment, such as the possibility 
of the suction cycle not being fully realized. 
 
A great deal of value can be achieved when 
experiments and computations are used in a 
synergistic fashion.  Each approach has its strengths 
and weaknesses, and by employing the strengths of 
both experiments and computations in solving an 
aerodynamic problem, a more complete and full 
picture of the processes of aerodynamics will be 
more realized. 
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