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ABSTRACT 
An understanding of the vortical structures and vortex 
breakdown is essential for the development of highly 
maneuverable and high angle of attack flight. This is 
primarily due to the physical limits these phenomena 
impose on aircraft and missiles at extreme flight 
conditions. Demands for more maneuverable air vehicles 
have pushed the limits of current CFD methods in the high 
Reynolds number regime. Simulation methods must be 
able to accurately describe the unsteady, vortical flowfields 
associated with fighter aircraft at Reynolds numbers more 
representative of full scale vehicles. It is the goal of this 
paper to demonstrate the ability of Detached-Eddy 
Simulation, a hybrid RANS-LES method, to accurately 
predict vortex breakdown at Reynolds numbers above 1 
million. Very detailed experiments performed at Onera 
with LDV and pressure measurement are used to compare 
simulations utilizing both RANS and DES turbulence 
models.    
 

 
INTRODUCTION 

The delta wing flow field is dominated by vortical 
structures, the most prominent called leading-edge  
vortices. As angle of attack increases, these leading-edge 
vortices experience a sudden disorganization, known as 
vortex breakdown which can be described by a rapid 
deceleration of both the axial and swirl components of the 
mean velocity and, at the same time, a dramatic expansion 
of the vortex core. Henri Werlé first photographed the 
vortex breakdown phenomenon in 1954, during water 
tunnel tests of a slender delta wing model at Onera.1 This 
work was quickly confirmed by Peckham and Atkinson,2 
Elle3 and Lambourne and Bryer4 and spawned a large 
number of experimental, computational and theoretical 
studies which continue today. These investigations led to 
the development of several theories governing vortex 
breakdown, although none have been universally 
accepted.5-9 Despite this lack of a unified theoretical 
interpretation, several forms of vortex breakdown have 
been identified7,10  (i.e. bubble, helical, etc.), and the global 
characteristics of the phenomena are understood. During 
the breakdown process, the mean axial velocity component 
rapidly decreases until it reaches a stagnation point and/or 
becomes negative on the vortex axis. This stagnation point, 
called the breakdown location, is unsteady and typically 
oscillates about some mean position along the axis of the 
vortex core11,12 (see Fig. 1). As angle of attack is increased, 

the mean vortex breakdown location moves upstream over 
the delta wing (from the trailing edge toward the apex).  
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Figure 1: Definition of the spatial location of the 

vortex core and the vortex breakdown location. 

The primary vortex over a slender delta wing at angle of 
attack is principally inviscid. Unfortunately, the location of 
the vortex is strongly affected by a secondary vortex 
formed by the inter-relationship between the surface 
boundary layer and the primary vortex. In addition, the 
vortex breakdown phenomenon creates turbulent kinetic 
energy that must be modeled properly. Many turbulence 
models create orders of magnitude too much turbulent 
edyy viscosity in the primary vortex core which 
significantly alters the flowfield and in some case 
eliminates breakdown observed experimentally at high 
Reynolds numbers.  For these reasons, an accurate 
prediction of the flowfield over a slender delta wing at 
high angles of attack and high Reynolds numbers must 
model the boundary layer, primary and secondary vortex, 
and turbulent kinetic energy correctly.  
 
While advances have taken place in areas such as grid 
generation and fast algorithms for solutions of systems of 
equations, CFD has remained limited as a reliable tool for 
prediction of inherently unsteady flows at flight Reynolds 
numbers. Current engineering approaches to prediction of 
unsteady flows are based on solution of the Reynolds-
averaged Navier-Stokes (RANS) equations.  The 
turbulence models employed in RANS methods 
necessarily model the entire spectrum of turbulent 
motions. While often adequate in steady flows with no 
regions of reversed flow, or possibly exhibiting shallow 
separations, it appears inevitable that RANS turbulence 
models are unable to accurately predict phenomena 
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dominating flows characterized by massive separations. 
Unsteady massively separated flows are characterized by 
geometry-dependent and three dimensional turbulent 
eddies. These eddies, arguably, are what defeats RANS 
turbulence models, of any complexity. 
 
To overcome the deficiencies of RANS models for 
predicting massively separated flows, Spalart et.al.13 ,20 
proposed Detached-Eddy Simulation (DES) with the 
objective of developing a numerically feasible and 
accurate approach combining the most favorable elements 
of RANS models and Large Eddy Simulation (LES). The 
primary advantage of DES is that it can be applied at high 
Reynolds numbers as can Reynolds-averaged techniques, 
but also resolves geometry-dependent, unsteady three-
dimensional turbulent motions as in LES. DES predictions 
to date have been favorable, forming one of the 
motivations for this research. The specific aim of this work 
is to apply and assess DES to the problem of vortex 
breakdown over slender delta wings at high Reynolds 
number. 
 
 

NUMERICAL METHOD 
 
In this section a brief description of the numerical method 
is provided. Full details of the computational scheme and 
the solution method are presented in Refence [14].  The 
delta wing model used is Onera’s sharp-edged, 70° sweep 
angle (Λ) delta wing with a root chord (c) of 950mm (Fig. 
2). The model has a wingspan of 691.5mm at its trailing 
edge, is 20mm thick, and is beveled on the windward side 
at an angle of 15° to form a sharp leading edge. Solutions 
were obtained for a freestream velocity of 24 m/s, an angle 
of attack of 27 deg, and a freestream pressure and 
temperature resulting in a Reynolds number of 1.56 
million. Angle of attack, Reynolds number and Mach 
number were chosen to match the wind tunnel data.   
 
Solutions were computed with the September 2001 version 
of Cobalt developed by Cobalt Solutions.  Cobalt solves 
the unsteady, three-dimensional, compressible Navier-
Stokes equations on an unstructured grid. The code has 
several choices of turbulence models including Spalart 
Almaras (SA), SA with rotation corrections (SARC), and 
SST RANS, as well as DES versions of SA and SST. The 
computational mesh currently being used is a 2.45 million 
cell unstructured mesh generated with the software 
packages GridTool15 and VGRIDns16. It consists of an 
inner region of prisms for the boundary layer with a y+ 
less than 1 and an outer region of tetrahedrons.  Fig. 2 
depicts the delta wing grid used for this study. As is 
evident in the figure, cells are clustered in the boundary 
layer and in the region of the vortex core. Also, the grid 
represents only the half-span of the delta wing. 
 
 
 

 
Figure 2: Unstructured Prism/Tetrahedron Grid, 2.47M 

Cells. 

Governing Equations  
The Navier-Stokes equations are solved in an inertial 
reference frame and can be written in integral form as,  
 

∫∫

∫∫∫∫∫
⋅++=

⋅+++
∂
∂

S

SV

dSnktjsir

dSnkhjgifQdV

ˆ)ˆˆˆ(

ˆ)ˆˆˆ(
t  

where 























+

+
=























=

)(

2

peu
uw
uv

pu
u

f

e
w
v
u

Q

ρ
ρ
ρ

ρ
ρ

ρ
ρ
ρ
ρ
ρ

 























+
+

=























+

+=

)()(

2

2

pew
pw

vw
uw
w

h

pev
vw

pv
uv
v

g

ρ
ρ
ρ
ρ
ρ

ρ
ρ

ρ
ρ
ρ























=























=























=

c

t

b

s

a

r

zz

yz

xz

yz

yy

xy

xz

xy

xx

τ
τ
τ

τ
τ
τ

τ
τ
τ

000

 

yyzyyxy

yyzyyxy

xxzxyxx

kTwvuc
kTwvub
kTwvua

+++=

+++=

+++=

τττ
τττ
τττ

 



 
AIAA 2002-0587 

 
3

 A fluid element volume over which the equations are 
enforced is denoted by V ; the bounding surface is 
denoted S  with outward pointing unit normal n̂ . The 

Cartesian unit vectors are î , ĵ , and k̂  ; ρ is the 
density ; p is the pressure ; u , v , and w are the 
velocity components ; e is the specific energy per unit 
volume; T is the temperature ; k is the thermal 
conductivity; and xxτ , yyτ , zzτ , xyτ , xzτ , and yzτ  are the 
viscous stress tensor components. The ideal gas law closes 
the system of equations and the entire equation set is non-
dimensionalized by freestream density and speed of sound. 
 Integrating the equations around finite volumes in 
the domain leads to the semi-discrete form for the system, 
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where the subscripted i and superscripted M denote 
quantities for the thi cell and the thM face of the cell i , 
respectively, and iN is the number of faces bounding cell 
i . The equations above can be solved on arbitrary cell 
types in Cobalt. For the current study, unstructured grids 
containing a combination of tetrahedra and prisms are 
used. Prisms are used in the boundary layer in order to 
reduce the number of cells as well as to improve the 
boundary layer computation. Boundary layer grids 
comprised of tetrahedra often possess high aspect ratios 
and can be strongly non-orthogonal. The high aspect ratios 
create problems in the calculation of divergence of the 
gradient (Forsythe et al.17). Prisms are more orthogonal 
and place less of a burden on the solver. 
 For simulation of turbulent flows, the governing 
equations are suitably averaged, yielding turbulent stresses 
that require a model. A Boussinesq approximation is 
invoked in the momentum equations and the turbulent 
eddy viscosity ( )tµ  is used to relate the stresses to the 
strain rate. The turbulent heat flux is also modeled using a 
gradient-transport hypothesis, requiring specification of a 
turbulent thermal conductivity, tk . Reynolds analogy is 
applied and the turbulent heat flux is modeled using a 
constant turbulent Prandtl number of 0.9. Using turbulent 
eddy viscosity and turbulent conductivity, the variable  
µ is replaced by ( )tµµ + and k is replaced by 

( )tkk +  in the governing equations. 
 
Spalart-Allmaras Turbulence Model  
The Spalart-Allmaras13 (SA) one equation model solves a 
single partial differential equation for a working variable 
ν~ which is related to the turbulent viscosity. The 
differential equation is derived by “using empiricism and 
arguments of dimensional analysis, Galilean invariance 
and selected dependence on the molecular viscosity.” The 

model includes a wall destruction term that reduces the 
turbulent viscosity in the laminar sublayer. The model 
takes the form, 

( )( ) ( )[ ].~~~1

~~~~

2
2

2

11

νννν
σ

ννν

∇+∇+⋅∇+





−=

b

wwb

c

d
fcSc

Dt
D

 

The turbulent kinematic viscosity is obtained from, 
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destruction function wf is, 
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The turbulent viscosity is obtained from the turbulent 
kinematic viscosity by tt ρνµ = . 
The model coefficients are, 
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Approximate SA-Rotation Correction Model  
Spalart and Shur18 presented improvements to the SA 
model specifically for vortical flows. The modification 
allows for the production of turbulent viscosity to be 
reduced in regions of high vorticity. One simple but 
effective formulation of the rotation correction was 
presented by Dacles-Mariani et.al.19. The modification to 
SA includes a new destruction term in the modified 
vorticity based on the magnitude of vorticity and the strain 
rate. The new modified vorticity is expressed as  
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where S is the magnitude of the vorticity, Ŝ  is the strain 

rate and vorC is a constant taken to be 4 for all runs. It 
should be noted that when the strain rate magnitude is ¾ of 
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the vorticity magnitude, the production term will be 
essentially zero. This allows vortical, turbulent flows to be 
calculated with a RANS turbulence model without too 
much dissipation being added to the vortex core, which 
typically eliminates the vortex breakdown phenomenon 
seen in experiments. The SA model with the approximate 
rotation corrections will be referred to as SARC in the 
results section. 
 
Menter’s Shear Stress Transport Model  
Menter’s shear stress transport (SST) model is a hybrid 

ε−k and ω−k turbulence model. Typical 
ω−k models are well behaved in the near wall region 

where low Reynolds number corrections are not required. 
However, they are generally sensitive to the freestream 
values of ω . On the other hand, ε−k models are 
relatively insensitive to freestream values, but behave 
poorly in the near wall region. Menter proposed a hybrid 
model. The SST model uses a parameter 1F to switch 
from ω−k to ε−k in the wake region to prevent the 
model from being sensitive to freestream conditions. The 
governing differential equations including a 
compressibility correction are given by  
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where the pressure dilatation term is 
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closure coefficients for the compressible corrections are 
.2.04.00.1 321 === ααα  

Although the current application is at flowfield conditions 
inconsistent with compressible flow, the compressible 
corrections were in the SST formulation and have been 
found to have no effect for very low turbulent Mach 

numbers. The switching function, 1F , can be computed 
using  
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The switching function also determines the value of the 
model constants. If 1φ represents a generic constant of the 

ω−k equations, and 2φ represents the same constant 
for the ε−k equations, then the model constants used in 
the combined method are determined by  

( ) .1 2111 φφφ FF −+=  
The shear stress transport modifications enhance the 
model’s accuracy for separated flows by limiting the 
turbulent shear stress to ka 1ρ where 31.01 =a . The 
turbulent viscosity is given by 
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where Ω is the absolute value of vorticity. The function 

2F  is included to prevent singular behavior in the 

freestream where Ω goes to zero. 2F  is given by 
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The model constants were recalibrated for the shear stress 
transport modifications and the only change was to 1kσ . 
The following are the coefficients for the hybrid model 
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Set 2 : ( )ε−k  
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Detached-Eddy Simulation  
 Detached-Eddy Simulation (DES) was proposed by 
Spalart et al.20.  The motivation for this approach was to 
combine large-eddy simulation (LES) with the best 
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features of Reynolds-averaged Navier-Stokes (RANS) 
methods. RANS methods have demonstrated an ability to 
predict attached flows very well with a relatively low 
computational cost. LES methods have demonstrated an 
ability to compute seperated flowfields accurately but at a 
tremendous cost for configurations with boundary layers. 
Spalart’s DES method is a hybrid of LES and RANS, 
which combines the strengths of both methods. 
 The DES model was originally based on the Spalart-
Allmaras one equation RANS turbulence model detailed 
above with a more detailed presentation in reference [13]. 
The wall destruction term presented above is proportional 
to ( )2/~ dν , where d is the distance to the wall. When this 
term is balanced with the production term, the eddy 
viscosity becomes proportional to 2ˆdS  where Ŝ  is the local 
strain rate. The Smagorinski LES model varies  its sub-
grid scale (SGS) turbulent viscosity with the local strain 
rate, and the grid spacing : 2ˆ∆∝ SSGSν , where 

( )zyx ∆∆∆=∆ ,,max  . If d  is replaced with ∆ in the wall 
destruction term, the S-A model will act as a Smagorinski 
LES model. 
 To exhibit both RANS and LES behavior, d in the 
SA model is replaced by  

( ).,min~ ∆= DESCdd  
When d <<∆ , the model acts in a RANS mode and when  
d >>∆  the model acts in a Smagorinski LES mode. 
Therefore the model switches into LES mode when the 
grid is locally refined.  
 DES was first implemented in an unstructured grid 
method by Forsythe et. al.21. They determined the 

DESC constant should be 0.65, consistent with the structured 
grid implementation of Shur et. al.18 when the grid spacing  
∆  was taken to be the longest distance between the cell 
center and all of the neighboring cell centers.  
 Strelets22 introduced a DES model based on 
Menter’s Shear Stress Transport model. The DES 
modification to the SST model replaces the length 
scale, ω−kl  , by  

( )∆= − DESk Cll ,min~
ω  

in the dissipative term of the k-transport equation.  
 
A Newton sub-iteration method is used in the solution of 
the system of equations to improve time accuracy of the 
point implicit method and approximate Jacobians.  In the 
calculations presented below, a typical number of three 
Newton sub-iterations is used for all time-accurate cases 
unless specified in the sub-iteration study.   
 

EXPERIMENTAL METHOD AND 
FACILITIES 

The experimental data used for comparison was obtained 
by Mitchel et. al.23 from Onera’s F2 wind tunnel. Onera’s 
F2 wind tunnel has a rectangular test section with a width 
of 1.4m, a height of 1.8m, and a length of 5m. It is 
powered by a 680kW DC motor that drives a fan with 
blades spanning 3.15m and provides a maximum free-

stream velocity in the test section of 105m/s. A cooling 
system in the closed-return portion of the wind tunnel 
facility maintains a constant free-stream temperature in the 
test section. The relative free-stream velocity, ∆U0/U0, is 
estimated to have an accuracy of 1% while the mean 
intensity of turbulence has an accuracy of 0.1%.24 
 
In F2, the delta wing model depicted in Fig. 3 was 
mounted on a sting with a horizontal support and flexible 
joint for adjusting the angle of attack, with an accuracy of 
± 0.05°. The horizontal support was manipulated in height 
along a vertical column so as to maintain the model close 
to the center axis of the test section. The model was 
mounted in the test section with no yaw angle with respect 
to the free-stream flow (estimated accuracy of ± 0.1°). The 
experimental dataset consists of steady pressure data at 
many locations on the top side of the delta wing and LDV 
data in planes parallel to the top surface, perpendicular to 
the top surface spanwise, and perpendicular to the top 
surface along the vortex core. 

 
Figure 3: Sketch of the delta wing model with nozzles 

for along-the-core blowing near the apex. 

RESULTS 
 
This section presents results of the numerical simulations, 
as well as comparison of these simulations to the Onera 
experimental data set. All cases were run at a freestream 
velocity of 24 m/s, an angle of attack of 27o, a Mach 
number of 0.069, and other freestream conditions 
consistent with a Reynolds number of 1.56 million. No 
attempt was made to model transition from laminar to 
turbulent flow on the delta wing. In all cases the spatial 
and temporal operators were second-order accurate. Fig. 4 
depicts a typical time-accurate flowfield solution for 
SADES.  Typical unsteady simulations were run for 9000 
time steps with an iteration plus two subiterations per time 
step. The baseline time step, non-dimensionalized by the 
root chord and freestream velocity, was 0.005. The delta 
wing surface is shaded with contours of pressure and an 
iso-surface of total pressure is depicted to show the 
primary vortex structure. It is apparent the the simulation 
was able to both capture the breakdown phenomena as 
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well as the post breakdown windings typically seen in 
experiments.  

 
Figure 4: Time-Accurate SADES Solution. 

  
Time Accuracy Study 
When computing solutions for unsteady flowfields such as 
vortex breakdown, it is important to determine the degree 
to which the solution is time accurate. Fig. 5 depicts the 
normal force on the delta wing as a function of non-
dimensional time for the SADES turbulence model at five 
different time steps. It is obvious from the figure that this 
is a very complex flowfield with large variations in time. It 
is difficult to tell from this figure whether there is a 
difference in the solutions as time step is varied or simply 
whether more time is necessary to resolve the resident 
frequencies and amplitudes of the normal force coefficient.  
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Figure 5: Normal Force Coefficient Time History. 

Another way to represent this data is by performing a 
power spectral density analysis of the time histories. This 
was accomplished for the current datasets using the 
MATLAB “psd” function. The psd power was scaled by 
the number of iterations analyzed and the output frequency 
was non-dimensionalized by the root chord and freestream 
velocity, giving the Strouhal frequency, St.  To show a 
coallesence of frequency with time step, the data was 
plotted versus the inverse of frequency or the wave 
number. The wave number with the highest power was 
tracked to determine if there was any change with time 
step. Fig. 6 shows the behavior of a particular wave 

number for six variations in time step of SADES. After 
analyzing the simulation it was determined that the wave 
number chosen is created by the formation of windings in 
the post breakdown region. As can be seen in Fig. 6, as the 
non-dimensional time step is halved the wave number 
decreases. For the three coarsest time steps, a change in the 
wave number is approximately equivalent to the decrease 
in time step. The three most refined time steps rapidly 
approach an asymptotic value of wave number. 
 
Cobalt also utilizes Newton subiteration to improve time 
accuracy. In the previous cases, an initial iteration plus two 
Newton subiterations were performed. To determine the 
affect of varying the number of subiterations, four different 
subiteration values were used and the results are presented 
in Fig. 7.     
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Figure 6: MATLAB power spectral density plot of 

normal force for variations in time step. 
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Figure 7: MATLAB power spectral density plot of 

normal force for variations in subiterations. 

Again we can see the wave number is reduced as the 
number of subiterations is increased. Fig. 8 displays the 
primary wave number versus the time step and number of 
subiterations.  One can see from the figure that the 
asymptotic value of this wave number is approximately 0.1 
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(St=10) and is captured fairly well with the baseline non-
dimensional time step of 0.005 and two subiterations.  The 
resulting wave number for the baseline values is 0.188, 
giving a Strouhal frequency of 5.3. The baseline values of 
time step and subiteration number were used for the 
majority of the simulations hereafter.  
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Figure 8: Wave number convergence for a varation 

in time step and subiteration. 

 
Turbulence Model Study  
After determining that the relevant features were being 
captured by the grid and that a reasonable level of time 
accuracy was obtained, a study of various RANS and DES 
turbulence models was accomplished.  Fig. 9 depicts the 
Strouhal frequency versus psd power for the SA, SST, 
SARC, SADES, and SSTDES turbulence models. All were 
run for 9000 iterations from a well developed SADES 
solution. Transients from the initiation of the turbulence 
model were eliminated from the datasets analyzed by not 
incorporating the first 1000 iterations in the frequency 
analysis. 
 
 Several conclusions can be made from Fig. 9. First, the 
SA and SST RANS models used widely by the industry 
are not able to capture the majority of the frequencies in 
the spectrum. In the case of both RANS models, all 
frequencies, except the dominant frequency previously 
discussed, have a power one could reasonably associate 
with random noise. Next, the SARC model compares 
surprisingly well with the DES methods. This is most 
likely due to the fact that the rotation correction is very 
effective in eliminating the affects of turbulence 
dissipation in the core of the vortex. The only range of 
frequencies the SARC model is not able to capture as well 
as the DES methods is 3<St<5, where the power is not as 
high as the DES methods. Finally, both DES methods are 
able to capture the full range of frequencies resident in the 
simulation of delta wings at high angles of attack. One 
further note concerning the SARC model is the fact that 
although it is able to capture the high Reynolds number 
vortex breakdown phenonmenon fairly well, the simulation 
has little hope of improving with a refinement in grid as is 

the case with the DES methods. Also, SARC is only an 
improvement in typical RANS models for vortical flows. 
Simulations with either DES method can improve with 
grid refinement, due to their LES nature, and also simulate 
massive separation not associated with strong vortices.22    
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Figure 9: MATLAB PSD for Various Turbulence 

Models. 

Fig.s 10-13 depict the flowfields for all of the turbulence 
models except the SST RANS model. The SST RANS 
model is not present since there is no visible difference 
between it and the SA RANS model. Note the lack of 
vortex breakdown for SA (and SST as well) commonly 
seen in experiments. Also, note the difference in winding 
characteristics between the SARC method and both DES 
methods. In the SARC simulation, as the vorticies lose 
their coherence, the correction is less likely to activate. 

Figure 10: Spalart-Allmaras RANS Simulation 
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Figure 11: SARC RANS simulation. 

 
Figure 12: SA-Detached Eddy Simulation. 

 

 
Figure 13: SST-Detached Eddy Simulation. 

 
Figure 14: SADES Vortex breakdown position with 

time (u=o). 

Comparison with Experiment  
The experimental data of Mitchel et. al.23 was next used to 
determine the degree to which SADES and the other 
models matched the experiments. A set of SADES time 
slices were interrogated to determine the vortex breakdown 
position as a function of time for several cycles of the 
primary frequency. Fig. 14 displays the vortex breakdown 
position, as determined by a stagnation point along the 
core, as a function of time. The vortex breakdown position 
range of motion is 0.605<x/c<0.67. Over the period 
examined, the position is aperiodic and experiences abrupt 
changes due to the formation and elimination of stagnation 
bubbles during the simulation.   Fig. 15 is a summary of 
the vortex breakdown position as a function of angle of 
attack, as seen experimentally by Mitchel et. al.23. The 
numerically computed vortex breakdown is in excellent 
agreement with the experimental results at 27o angle of 
attack, falling within the range of uncertainty. 
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Figure 15: Experimental vortex breakdown position. 

Next, Fig. 16 (a-d) depicts cross-planes of vorticity for 
SADES and the experiment at four distances along the 
root chord.  
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Figure 16: Vorticity in various crossplanes 

comparison between the ONERA experimental data 
and SADES. 
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At each cross-plane station, the scale and color maps are 
consistent with the experiment. The time average of 
vorticity over the entire simulation is displayed on the left 
half of the delta wing and the instantaneous vorticity is 
displayed on the right half of the delta wing. It is readily 
apparent that the geometry of the vortex and the relative 
strength of vorticity are in good agreement with the 
numerical simulations for both the primary and secondary 
vortex. The experiment has a moderately higher value of 
vorticity in the core as seen by the darkness of the blue 
shading in the core region. It should be noted that at the 
600 mm station, the experiment shows breakdown has not 
occurred but the simulation shows it has broken down. The 
flowfield was interrogated to determine the vortex 
breakdown position for this instant in time and it is at 590 
mm, explaining the difference in this cross-plane vorticity.  
It should also be noted that the experiment was not able to 
gather vorticity data very close to the surface, due to 
experimental limitations, whereas the simulation captured 
both the vorticity in the boundary layer and the secondary 
vortex. The 700 mm and 800 mm experimental cross-plane 
figures show evidence of the secondary vortex at the same 
vorticity level and position as the numerical simulations.  
 
To determine if the production of turbulent kinetic energy 
is equivalent with the experiment, cross-planes of resolved 
turbulent kinetic energy in a horizontal plane through the 
vortex core were examined and compared to the 
experiment. As in the previous comparisons, careful 
attention was paid to matching the color maps and 
geometry of the experimental data. The figures based on 
numerical simulation have a black line located at the delta 
wing leading edge for reference. 
 
It is clear from Fig.’s 17 and 18 that RANS models add too 
much turbulent eddy viscosity to the core of the vortex, 
which in turn kills the resolved turbulent kinetic energy. 
This is the reason that typical RANS models can not 
reproduce vortex breakdown very well. Fig. 19 
demonstrates the affects of the rotation correction in the 
SARC model. In the core of the vortex the vorticity 
magnitude dominates the strain rate, creating a turbulent 
eddy viscosity destruction term in the region of the vortex. 
The lack of eddy viscosity allows a highly energetic burst. 
As can be seen in Fig. 19, the turbulent kinetic energy 
contours are very similar to the experiment. The major 
disagreement is in the location of the breakdown.    
 
Both DES models are also able to capture the turbulent 
kinetic energy patterns in the experimental data as can be 
seen in Fig.’s 20-21. Although the level of turbulent 
kinetic energy found in the cross plane is lower than that 
found in the experiment, the region of increased turbulent 
kinetic energy has a very similar shape and the location of 
vortex breakdown is closer to the experiment. Two things 
should be noted with respect to the DES models. First, 
SSTDES is closer to the experiment than SADES for a 
given time step. Also, when the time step used to compute 
the SADES solution is decreased by a factor of four, the 

solution is much closer to the experiment. This is 
consistent with the fact that DES is an LES based method 
and will improve with a reduction in time step or grid cell 
size. It would be instructive to see how a SARC based 
DES method would compare to the experiments and other 
turbulence methods.    
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Figure 17: SA and experimental turbulent kinetic 

energy in a horizontal plane through the vortex 
core. 
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Figure 18: SST and experimental turbulent kinetic 

energy in a horizontal plane through the vortex 
core. 
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Figure 19: SARC and experimental turbulent kinetic 

energy in a horizontal plane through the vortex 
core. 
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Figure 20: SADES and experimental turbulent kinetic 

energy in a horizontal plane through the vortex 
core. 
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Figure 21: SADES and experimental turbulent kinetic 

energy in a horizontal plane through the vortex core 
at a refined time step. 
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Figure 22: SSTDES and experimental turbulent 

kinetic energy in a horizontal plane through the 
vortex core. 

The last comparison with experiment demonstrates the 
ability of DES methods to accurately reproduce the 
flowfield near the surface. Fig. 23 depicts experimental 
and numerically derived surface oil patterns. It is not 
surprising that SA and SADES give essentially the same 
solution since DES acts in RANS mode near the surface. It 
is encouraging to note that the oil patterns compare very 
well with the experiment. The major difference is the 
inability of the computations to represent the “pinching” of 
the paterns near the leading edge at the 40% x/c station. 
This behavior is most likely due to a transition from 
laminar to turbulent flow and was not reproduced in the 
computations since there was no transition model 
implemented for any of the computational methods.    

 
Figure 23: Oil flow comparison between SA, SADES 

and experiment. 

 
CONCLUSIONS AND 

RECOMMENDATIONS 
 
DES simulations of a delta wing experiencing vortex 
breakdown were successfully computed and compared to 
RANS methods and a very detailed experiment. These 
solutions were shown to be sensitive to time accuracy in 
the frequency domain but achieved an asymptotic solution 
as time step was reduced. The typical RANS methods of 
SA and SST were shown to be inadequate in capturing the 
physics of vortex breakdown at high Reynolds number, 
whereas, both DES methods and SARC captured the full 
spectrum of frequencies and compared very well with the 
experimental data.  
 
The success of SARC near the vortex breakdown position 
motivates the inclusion of a rotation correction within the 
DES method. The turbulent eddy viscosity will go to zero 
for DES as the grid is refined, approaching a direct 
numerical simulation. Adding the rotation correction to 
DES would potentially allow a reduction in the turbulent 
eddy viscosity prior to the breakdown location on 
moderate grids. The success of DES in capturing the 
windings would be maintained. In summary, the overall 
success of DES methods in capturing vortical flows, 
combined with the previous success in capturing massively 
separated flows, make them extremely useful for full 
aircraft solutions at high angles of attack and flight 
Reynolds numbers.   
 
Future research should incorporate a very detailed grid 
convergence study coupled with a complete time-accuracy 
study to determine the necessary grid and temporal 
resolution of DES methods when computing  vortical 
flowfields. In addition, a DES modified SARC method 
should be investigated to determine the advantages and 
disadvantages for the full range of applications. 
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