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This work provides an overview of the grid quality and resolution effects on the aerodynamic modeling of ram-air

parachute canopies. The computational-fluid-dynamics simulations of this work were performed using the Cobalt

flow solver,which is a three-dimensional code, but it was run in a two-dimensionalmode for canopy sectionswith open

and closed inlets. Previous simulation results of these geometries showed that grid independence is achieved for the

closed and open airfoils with grids containing around half a million and 2 million cells, respectively. Previous grids

were either hybrid with prismatic layers near the walls ormultiblock structured using algebraic grid generators. The

results presented in this work show that grid independence of both geometries can be achieved with much coarser

grids. These grids, however, were generated with good smoothness, wall orthogonality, and skewness qualities. The

results show that the grid quality value is mainly related to the grid smoothness and does not depend on the grid

skewness or the wall orthogonality. Although a smooth grid improves the quality value, and therefore the solution

convergence, it does not always lead to anaccurate solution.For example, theunstructuredgridswith anisotropic cells

near the wall have very good grid quality; however, they have the worst accuracy among all grids considered because

of the poor skewness at the walls. The results also showed that, in comparison to the closed inlets, the open geometry

solutions are less sensitive to the initial grid spacing and number of constant spacing layers at the outside airfoil walls.

Finally, the open inlet solutions do not change with the inside airfoil grid resolution and type.

Nomenclature

a = speed of sound, m∕s
CD = drag coefficient, D∕q∞S
CL = lift coefficient, L∕q∞S
Cp = pressure coefficient, �p − p∞�∕q∞
c = mean aerodynamic chord, m
D = drag force, N
GQ = grid quality
GR = growth rate in the viscous layer
L = lift force, N
l = far-field distance away from the airfoil, m
M = Mach number, V∕a
Ns = number of layers of constant spacing normal to all

viscous walls
p = static pressure, Pa
p∞ = freestream pressure, Pa
qik = kth grid quality metric at ith cell
q∞ = ρV2∕2, dynamic pressure, Pa

Re = Reynolds number, ρVc∕μ
S = planform area, m3

t = time, s
t� = normalized time, tV∕c
V = freestream velocity, m∕s
x, y, z = grid coordinates
y� = nondimensional wall distance
α = angle of attack, deg
Δs1 = initial spacing at all viscous walls
η, ζ, ξ = grid orientation vector
μ = air viscosity, kg∕�m · s�
ρ = air density, kg∕m3

I. Introduction

T HE accuracy and expediency of computational fluid dynamics
(CFD) solutions depend not only on the underlying numerical

methods but also on the grid-generation process in which the
computational domain is discretized into distinct subdomains. These
subdomains are called cells or grid blocks. The computational grids
should exactly represent the geometry of the problem of interest;
however, truncation and machine roundoff errors are still present in
the numerical solutions of partial or ordinary differential equations
[1]. These errors depend on the grid size such that, for a finer grid, the
truncation errors decrease, but the rounding errors will increase.
Finally, inaccurate interpolation of the discrete solutions between
grid blocks will increase the numerical error.
Uniform grids have many advantages over nonuniform grids,

including more accuracy and faster convergence [2]. However, to
resolve boundary-layer and wake regions in viscous flows, a uniform
grid approach would require a very large number of grid points,
which increases the computational cost. Practical turnaround times
for obtaining a CFD solution and availability of computer resources
would limit the uniform grid applicability for three-dimensional
(3-D) problems. The total number of grid points, and therefore
computational cost, can be reduced by using a nonuniform grid
approach, in which the grid points are clustered near the regions of
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interest and are coarsely distributed elsewhere. These nonuniform
cells can sometimes lead to grids of locally poor quality that will
increase the computational solution error [3]. The performance of
numerical methods can be significantly reduced even if just a few
low-quality cells are present [4].
Grid-generation efforts can be traced back to the 1960s. Since then,

many grid-generation methods have been proposed, such as
conformal mapping, algebraic construction, partial differential
equation solutions (elliptic, hyperbolic, and parabolic equations),
Delaunay, advancing-front, andmanyothers [5]. Thesemethods have
been used to generate structured (ST) and/or unstructured (UNSTR)
grids over simple to complex geometries. Each method leads to a
different grid quality for a given geometry. Additionally, although
some grid-generation methods could be fast and even automated,
others are a time-consuming manual process.
Conformal mapping is the simplest method of structured grid

generation, in which the computational domain is mapped onto a
rectangular region. Although the method is simple and efficient and
creates very high-quality cells, it is practical only for simple two-
dimensional problems. To create a smooth structured grid, elliptic
grid generators can be used, which involve the numerical solution of
inhomogeneous elliptic partial differential equations [6]. Grid
smoothness can help reduce the truncation error and improve the
accuracy. A disadvantage of the elliptic grid generation is the limited
control over the interior grid points. Algebraic methods have also
been used to create structured grids. These methods use algebraic
transformation and an interpolation scheme to distribute grid points
from a discrete set of data [7]. In comparison to elliptic grid
generators, algebraicmethods requiremuch less computational effort
and have better control over grid point locations, but the grid may not
be as smooth as an elliptic grid. To improve the interior grid over
complex geometries, the multiblock strategy has been proposed, in
which the computational domain is divided into several smaller
subdomains (block), and then separate grids are generated for each
block [8]. Each block can initially bemeshed by an algebraicmethod,
and then an elliptic solver is used to smooth the grids.
Although structured grids offer higher accuracy, simplicity, and easy

data access compared to anunstructuredgrid, unstructured grids (using
tetrahedra cells) are more popular for complicated geometries [9].
Delaunay and advancing-front methods are the most popular colored
tetrahedral (triangular in two-dimensional geometries) grid generators.
The advancing front creates the cells one by one, starting from the
domain boundary and bymarching a front toward the interior [10]. The
front refers to the cells that meet ungridded domains; the front will
eventually vanish when the grid is completed. The advancing-front
approach will have the best-quality cells at the boundaries and the
worst cells where the front collideswith itself [10]. Therefore, this grid
generator is very helpful for modeling inviscid or laminar flows over
solid walls. The advancing-front method can even be used to create
quadrilateral cells; however, the interior cells could have lowquality, or
the grid may not be completed for a complex geometry. Typical
Delaunay grid generators start from a boundary discretization. New
points and triangular cells are then added to satisfy a particular
connectivity. The method maximizes the minimum angle of all
triangles to avoid sharp and distorted cells wherever possible [11].
Delaunaygrid generators, unlike the advancing-frontmethod, have the
worst cells at the domain boundary and the best cells in the interior
[10]. Therefore, the Delaunay and the advancing front approaches are
often combined to use the advantages of both methods.
Unstructured grids are not effectivewhen localized regions of high

gradients appear in the flow, such as boundary layers [12]. Hybrid
grid generators and anisotropic tetrahedral extrusion are commonly
used to treat boundary layers in unstructured grids. The first step of a
hybrid approach is the triangulation of the computational domain and
then placing prismatic (quadrilaterals in two-dimensional geom-
etries) cells near boundary surfaces. The prismatic cells are typically
created using an advancing layer scheme. In such a grid, the outside
boundary nearly has isotropic tetrahedral cells [13]. A disadvantage
is that prismatic cells may have poor quality near sharp edges. An
anisotropic tetrahedral extrusion creates triangular cells in a layer-by-
layer fashion with the extrusion direction normal to the surface [12].

The method begins with an isotropic tetrahedral grid (generated by
Delaunay and/or advancing-front methods), and tetrahedra on
surfaces are then subdivided into anisotropic cells for a user-specified
number of layers [14]. However, this approach might create
extremely stretched tetrahedra cells near the walls, which impact the
accuracy of computations.
At the U.S. Air Force Academy, the hybrid grid approach has been

successfully used for a number of years for CFD simulation of many
fighter aircraft [15–18]. These grids have structured cells near solid
surfaces and unstructured cells elsewhere. Specifically, an inviscid
tetrahedral grid is generated using the ANSYS ICEM-CFD code.
This grid will then be used as a background grid by the grid generator
TRITET [19,20], which builds prism layers using a frontal technique.
TRITET rebuilds the inviscid grid while respecting the size of the
original inviscid grid from ICEM-CFD.More recently, the authors of
this work used this hybrid grid approach for prediction of
aerodynamic characteristics of a ram-air parachute [21,22]. The grid-
sensitivity study showed that solutions are very sensitive to the grid
quality and size for the airfoils/wingswith an open inlet. For example,
the airfoil solutions becamegrid-independent for the hybrid grids that
have more than 1.7 million cells. That brings to mind a question of
whether another grid generator could produce similar predictions to
the hybrid fine grids, but at a much lower computational cost.
The objectives of the work presented here are twofold: 1) to assess

the grid resolution and find coarse grids that can have comparable
results to the fine grids, and 2) to enhance the understanding of the
relationship between grid quality and the solution accuracy and
convergence.
The following assumptions and conditions were included for the

simulations.
1) Only two-dimensional airfoils and flows were considered.
2) Flow calculations were performed using the commercial code

Cobalt, a cell-centered, finite volume, unstructured flow solver.
3) Turbulence contributions were included using the Spalart–

Allmaras (SA) model.
The two-dimensional and SA turbulence model constraints

necessarily limit extrapolation of the results to three-dimensional
parachute configurations, which exhibit massively separated flows.
However, the restrictions were imposed to serve as a baseline to
reduce the number of parameters being varied within the study while
preserving key attributes that have been extrapolated to engineering
problems. For example, the grid quality metrics that were used
focused on geometric information such as smoothness and skewness.
Ultimately, the results of this work are intended to refine the
guidelines applied to CFD modeling of ram-air parachutes.

II. Computational-Fluid-Dynamics Solver

This study uses the commercial flow solver Cobalt, which solves
the unsteady, three-dimensional, compressible Navier–Stokes
equations in an inertial reference frame. Arbitrary cell types in two
or three dimensions may be used; a single grid therefore can be
composed of different cell types [23]. In Cobalt, the Navier–Stokes
equations are discretized on arbitrary grid topologies using a cell-
centered finite volume method. Second-order accuracy in space is
achieved using the exact Riemann solver of Gottlieb and Groth [24]
and least-squares gradient calculations using QR factorization. To
accelerate the solution of the discretized system, a point-implicit
method using analytic first-order inviscid and viscous Jacobians is
used. A Newtonian subiteration method is used to improve the time
accuracy of the point-implicit method. Tomaro et al. [25] converted
the code from explicit to implicit, enabling Courant–Friedrichs–
Lewy numbers as high as 106. In Cobalt, the computational grid can
be divided into group of cells, or zones, for parallel processing, where
high performance and scalability can be achieved even on thousands
of processors [26]. Some available turbulence models in Cobalt are
the Spalart–Allmaras (SA) model [27], Spalart–Allmaras with
rotation correction (SARC) [28], and delayed detached-eddy
simulation with SARC [29].
Cobalt checks the grid quality and reports a score; this score is

directly related to a particular part of the second-order accurate spatial
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operator inside Cobalt [30]. Specifically, consider a bounding face of
a given cell. Various fluid quantities (e.g., density) are computed for
the face using fluid data in the cell itself and central-difference
gradients computed using data from all nearest neighbors of the given
cell. If there is a local extremum at the face, then the central-
difference gradient is replaced with a one-sided gradient for stability.
This one-sided gradient omits, at the very least, data from the
neighbor cell sharing the given face, and other neighbor cells may
also need to be discarded [23]. The effect of each of these omissions is
to add numerical dissipation, and the grid quality score is used to
monitor the energy loss by tracking how many neighbor cells are
turned off and their relative weight in the construction of one-sided
gradients.**

The reported score is averaged over all the cells and ranges from
zero to 100, such that the lower the grid score is, the more numerical
dissipation is added to the solution (worse stability). Note that
Cobalt’s grid score involves the grid geometry information only and
not the flow solution obtained on that grid. This means that the grid
quality is a fixed number regardless of the angle of attack (AOA) and
Mach number. Cobalt’s User Guide [30] details that the high aspect
ratio of cells (typically placed in the boundary layer) can cause the
quality to suffer. Also, regions of high surface curvature can
adversely impact grid quality. The grid quality will improve if a
sufficient number of surface cells are used to accurately capture any
geometric curvature.

III. Grid Quality Measures

The relationship between the grid quality and solution accuracy
will be investigated in this work. A priori grid quality metrics could
provide some guidance of the grid before running it in CFD [31]. The
grid quality mainly deals with the geometric information of the grid.
Before examining the grid quality, one should check the grid for
negative volume (or volumes below a threshold) and folded cells.
These types of cells make a cell-centered flow solver impossible to
iterate [32]. Typically, a high-quality grid is obtained by creating
well-shaped cells (orthogonal structured cells or isotropic tetrahedra
cells) with moderate smoothness. Therefore, most grid quality
metrics indicate how much a grid cell deviates from its ideal shape.
The numerical predictions obtained on the grids could be used to

improve the grid quality metrics [3]. One simple example is y� value
at thewalls. According to the gridding guidelines from the 2ndAIAA
CFD High Lift Prediction Workshop [33], approximate initial
spacing normal to all viscous walls should have y� values of
approximately 1.0, 2/3, 4/9, and 8/27 for a coarse, medium, fine, and
extra fine grid, respectively. In more advanced grid-generation
methods, the solution errors are used to refine the grid in regions
where the error is large.
Grid resolution and quality should be checked before running the

grid in CFD. The grid resolution should be high enough to capture the
flow physics.Mavriplis et al. [34], for example, have recommended a
chordwise grid spacing of 0.1% of local chord (for a medium grid) at
the wing leading and trailing edges. In the spanwise direction at the
wing root and tip, a grid spacing of 0.1% of semispan was
recommended. The grid dimension (size) at the wing trailing-edge
base is recommended to be 8, 12, 16, 24 for a coarse, medium, fine,
and extra fine grid, respectively. The grid resolution can be evaluated
by sensitivity studies. The results become grid-independent if they
show less than 3% difference from a 30% finer grid [35].
The grid quality is often measured for each cell from given

information about the cell’s aspect ratio and skewness. It is also
desirable to have near-wall faces parallel to thewall. Additionally, the
rate at which the grid spacing changes from one cell to another (grid
smoothness) is important. Optimal grids have equilateral cells
(equilateral triangles and squares) with a smooth change of
dimensions through the domain [35]. Specifically, cell skewness
should be kept relatively small because high aspect ratios would slow
down the convergence. Finally, a spacing growth rate below 20%
does not affect the solutions [35], but higher values affect the solution

accuracy and convergence. The reader should note that these criteria
might change from one solver to another. This is discussed later in
this section.
Several other grid quality metrics have been suggested. Alter [36],

for example, has described a grid quality metric for structured three-
dimensional grids. This metric is defined by

GQ �
�θmin

�Θ
�ϵmax

(1)

where GQ denotes the grid quality ranging from zero to 1; �θmin, �Θ,
and �ϵmax show deviations from orthogonality, straightness, and
stretching, respectively. Best grid quality comes withGQ � 1. Some
examples of orthogonality, stretching, and straightness are shown
in Fig. 1.
A grid quality metric based on the deviation from an ideal cell

shapewill probably invalidatemost of anisotropic cells near thewalls
for viscous flows. On the other hand, these anisotropic cells are
allowed in many flow solvers. In addition, for all cell-centered flow
solvers, the quadrilateral faces should be planar; however, nonplanar
faces are not an issue in most node-based solvers. McDaniel [32]
therefore proposed that an independent grid quality should be
provided from theviewpoint of each flow solver (cell-centered, node-
based, and others). He then introduced grid quality metrics for the
kCFD [37], which solves the unsteady, three-dimensional,
compressible Reynolds-averaged Navier–Stokes equations on
hybrid unstructured grids. Note that both Cobalt and kCFD code
originated from the Air Vehicles Unstructured Solver (formally
known as Cobalt60 [24]), which is a parallel, implicit, unstructured
flow solver developed by the U.S. Air Force Research Laboratory.
Both solvers have since been significantly modified. McDaniel then
defined some grid quality metrics that are applicable to most cell-
centered numerical algorithms and all cell types and take into account
the fact that large-area faces have a larger flux contribution to the
solution value in the cell.

IV. Test Cases/Previous Results

The U.S. Department of Defense program to develop precision
guided airdrop systems is known as the Joint Precision Airdrop
System (JPADS), which is coordinated by the U.S. Army Natick
Soldier Center. The JPADS uses round and ram-air parachutes
(parafoils) for deceleration and control of the payload [38]. Different
types of airfoil sections have been used for parafoils; initial ram-air
canopy designs used the Clark-Y section, which has good lift-to-drag
(L∕D) characteristics for Reynolds numbers over several orders of
magnitude (500; 000 < Re< 107) [39,40]. Over the years, this airfoil
shape has been modified for parachute applications to improve the
lift-to-drag ratio; recent canopy designs are based on the airfoil
sections used in glider design (for example, NASALS1-0417 airfoil)
[41]. In this work, the low-speed airfoil section of an actual parafoil is
investigated. The airfoil considered here is a nonsymmetric airfoil
that has a flat bottom surface. The flow around this airfoil has been
studied by Ghoreyshi et al. [21] and Bergeron et al. [22] for open and
closed inlets; the open and closed-inlet geometries are shown
in Fig. 2.
Ghoreyshi et al. [21] performed the grid-independence study of

both airfoils. These results are shown in Figs. 3 and 4. Closed airfoil
grids are fully structured or hybrid; structured grids were generated
using the multiblock techniques inside the commercial code of
Pointwise V17.01.R3 released June 2013.†† Hybrid grids were
generated using ICEM-CFD and the grid generator TRITET. All the
grids labeled in Fig. 4 are of hybrid type.
Figure 3 shows that the solutions of structured medium (around

663,000 cells) and fine grids (around 3 million cells) match
everywhere. The solutions of the hybrid medium grid (around
744,000 cells) are in close agreement with the medium and fine
structured grids as well. The coarse structured grid (around 172,000
cells), however, only matches the solutions up to an angle of 6 deg; at

**Strang, W., Private Communication, June 2015. ††Data available online at http://www.pointwise.com [retrieved June 2015].
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a) Closed inlet b) Open inlet

Fig. 2 Airfoil geometries for the parachute cases.

Fig. 1 Orthogonality, stretching, and straightness examples for structured grids.

Fig. 3 Grid-independence study of the closed-inlet airfoil.
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higher angles, it predicts smaller lift and larger drag coefficients.
The grid convergence index (GCI) values, which are a measure of
the percentage difference between the computed solution and the
asymptotic numerical solution, were estimated only for the coarse
and medium grids at 8 deg angle of attack with an assumed safety
factor of 1.25. The GCI indicates the amount of change in the
computed solution that would result from additional grid refinement.
The reader is referred to the work of Oberkampf and Roy [42] for
more details of the grid convergence index. GCI values of the lift
coefficient are 0.82% using the coarse grid and 0.0489% using the
mediumgrid. For the drag coefficient, GCI values are 4.12 and 0.19%
using the coarse and medium grid, respectively.
The closed airfoil is further investigated in this work. This

geometry is used to determine if predictions of a low-resolution but
high-quality grid can still match with the medium and fine grid data.
The second goal is to relate the solution accuracy and convergence
with grid parameters and quality metrics. All grids of this work were
generated using Pointwise, and predictions were compared with
solutions of the fine structured grid (containing 3 million cells).
Cobalt reports an averaged grid quality of 99.74 in a range of zero to
100 for this fine grid.
Figure 4 shows that CFD solutions of the open-inlet airfoil largely

depend on the grid resolution. Coarse and medium grids (containing
around 452,000 and 548,000 cells) were generated from a low-
density inviscid grid, and CFD data using these grids do not match
with fine grid data (containing around 943,000, 1.78 million, and
2.45 million cells). Figure 4 shows that solutions do not change with
grid density for the grids that have more than 1.78 million cells. GCI
values of the lift coefficient at α � 8.5 deg are 6.9 and 1.9% using
grids containing 452,000 and 943,000 cells, respectively.
The coarse grids, with different grid-generation methods, are

tested in Cobalt, and the results are compared to the Hfine grid (1.78
million cells) data in [21]. This grid has aCobalt quality of 99.83. The
gridding study is performed on both outside and inside domains. The
effects of meshing on the solution accuracy and convergence are
investigated.

V. Results and Discussion

For the sake of convenience, the closed and open inlet grids are
labeled “CG” and “OG,” respectively. All CFD simulations were
performed using the Spalart–Allmaras (SA) turbulence model and
were run on the Cray XE6 machine at the Engineering Research
Development Center. The freestream velocity in all simulations was
fixed at Mach 0.1, and the Reynolds number is 1.4 × 106 at standard
sea-level conditions. The simulations were performed for an angle-
of-attack sweep from zero to 10 deg with 1 deg increment. Wall
boundary y� values shown in the results are the maximum values
reported from the Cobalt code.
As noted in [21], the flow around an airfoil with an open leading

edge is unsteady with large oscillations in lift and drag coefficients.
Therefore, in all simulations of this work, second-order accuracy in

time (i.e., unsteady), three Newton subiterations, and 20,000
iterations (ITER)with a normalized time stepΔt� of 0.034were used.
The normalized time step defined as t� � Vt∕c uses a length scale c
of 1 m and velocity V of 34 m∕s. The last 10,000 iteration values
were time-averaged to obtain lift and drag coefficients.
All grids were run in Cobalt, and errors in the force coefficients

from the predictions of fine grids are estimated. Specifically, the error
norm of lift coefficient CL, drag coefficient CD, and lift to drag ratio
L∕D is defined as

err �
������������������������������������������������������������������������
�1∕Ni�

PNi

j�1 �yNewGrid
j − yFineGridj �2

q

jyFineGridmax − yFineGridmin j × 100 (2)

where y � �CL; CD; L∕D�;Ni is number of angles of attack, which is
11 in this work. The error norm is also found for the maximum lift
coefficient (CL max) as

err2 � CNewGrid
L max − CFineGrid

L max

CFineGrid
L max

× 100 (3)

A. Closed-Inlet Airfoil

A medium-size grid (named CG1) was generated with details
given in Table 1. The grid was generated layer by layer using an
elliptic extrusion method starting from the walls. The method stops
when the new grid layer reaches a total height of 200 m. The outer
edges of the cells, at the final layer, define the freestream boundary.
The coarse grid used in [21] was also modified to have exactly the
same number of grid points and spacings on thewalls as theCG1grid.
This new grid (named CG2), however, was generated using a
multiblock method with an algebraic grid generator applied to each
block. CG2 grid details are also given in Table 1. Table 1 confirms
that CG1 and CG2 grids have nearly equal number of cells. The
overview of grids near the trailing edge is shown in Fig. 5.
Table 2 compares y�, Cobalt grid quality, and the error norms on

the CG1 and CG2 grids. Although both grids have approximately the
same resolution, y�, and grid quality, the errors from CG1 are one
order of magnitude less than the CG2 grid. In more detail, Fig. 6
compares the lift and drag coefficients of CG1 andCG2gridswith the
Structured Fine (SFine) grid data. The comparisons show that the
CG1 grid perfectlymatcheswith the SFine grid predictions; however,
CG2 predictions do not match at all angles of attack. A question that
arises is why these grids, both structured, with the same y�, grid
quality, and resolution, lead to different answers to the exact same
problem.
Figure 7 shows the convergence histories of the density residual

(Dρ∕Dt) for the CG1 and CG2 grids as well as the SFine grid
containing 3 million cells. Figure 8 also shows the time histories of
lift and drag coefficients of the CG1 grid. Figures 7 and 8 show that

Fig. 4 Grid-independence study of the open-inlet airfoil.
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both the CG1 and CG2 grids had approximately three orders of
magnitude reduction in the density residual. The solutions converged
to final values as the lift and drag variations are small (less than 0.1%).
Figure 7 also indicates that both grids exhibit very similar
convergence behavior after 5000 iterations. Because CG1 and CG2
have the same quality and resolution, a preliminary conclusion is that
solution convergence in Cobalt is related to the grid quality and the
resolution. The SFine grid quality in Cobalt is 99.74 slightly higher
than CG1 and CG2; also it is a very high spatial resolution grid. As
expected, Fig. 7 shows that the SFine grid hasmore residual drop than
other grids.
Now, in attempting to answer the aforementioned question, the

reader is referred again to the grid overviews shown in Fig. 5.
Detailed visualization of the cells around the trailing edge reveals that
CG1 has better wall orthogonality (straightness), smoothness, and
skewness compared to CG2. Many cells in CG2 are highly skewed;
furthermore,most grid lines are not orthogonal to thewalls. However,
Cobalt’s overall grid quality is very similar for both grids. The grid
quality plots of CG1 and CG2 (around the trailing edge) can also be
seen in Figs. 9a and 9b. Note that white cells in the figures indicate
high grid quality (above 99). Figure 9b shows that most CG2 cells in
Cobalt have high quality, whereas they were expected to have low
quality because of the poor flow alignment and skewness.
Grid smoothness, skewness, and the wall orthogonality values are

also shown in Fig. 9. This figure shows that CG1 cells arewell shaped
with good smoothness and 90 degwall angles. Comparing these plots
with Cobalt grid quality pictures reveals that Cobalt grid quality is
related to the grid smoothness but not the skewness or the wall
orthogonality. Figure 10 shows the same correspondence for the cells
near the leading edge. CG2 cells at the leading edge have slightly
better smoothness thanCG1, but it has highly skewed cells. Figure 10

shows that Cobalt’s quality (at the leading edge) is better for CG2
compared to CG1 cells. This again confirms that Cobalt grid quality
does not changewith the skewness or wall orthogonality. This means
that a high grid quality in Cobalt corresponds to good smoothness,
which would improve the convergence, but it does not necessarily
provide better accuracy. The flow solutions at the CG1 andCG2 grids
will be presented later in this section.
Four new grids (CG10–CG13) were generated around the closed-

inlet airfoil by the normal extrusion of the wall using an elliptic grid
generator. The edge lengths of these grids are about half of the edges
in CG1 and CG2 grids. All grids are structured and contain around

Table 1 Closed grid details (in all grids GR � 1.1)

Grid Type Method Δs1 l∕c Number of cells

SFine STR Multiblock, algebraic 1e − 5 50 3,141,000
CG1 STR Normal extrusion, elliptic 1e − 5 100 341,850
CG2 STR Multiblock, algebraic 1e − 5 100 324,570
CG10 STR Normal extrusion, elliptic 4e − 5 25 115,320
CG11 STR Normal extrusion, elliptic 4e − 5 50 120,900
CG12 STR Normal extrusion, elliptic 4e − 5 75 124,620
CG13 STR Normal extrusion, elliptic 4e − 5 100 128,340
CG20 STR Normal extrusion, elliptic 2e − 5 50 127,410
CG21 STR Normal extrusion, elliptic 1e − 5 50 133,920
CG30 UNSTR Delaunay, anisotropic viscous layers 4e − 5 50 101,894
CG31 UNSTR Delaunay, anisotropic viscous layers 2e − 5 50 114,970
CG32 UNSTR Delaunay, anisotropic viscous layers 1e − 5 50 128,564
CG40 Hybrid Delaunay, 25 prismatic viscous layers 1e − 5 50 55,324
CG41 Hybrid Delaunay, 50 prismatic viscous layers 1e − 5 50 77,754
CG42 Hybrid Delaunay, 75 prismatic viscous layers 1e − 5 50 100,842

Fig. 5 CG1 and CG2 grids overview.

Table 2 Closed grid solution details

Error, %

Grid y� Quality CL CD L∕D CL max

SFine 0.2677 99.79 — — — — — — — —

CG1 0.2663 98.62 0.1484 0.1276 0.2209 0.1183
CG2 0.2339 98.81 1.1504 2.0752 5.6311 −1.7914
CG10 1.074 99.14 1.8921 2.9175 8.1312 −1.7116
CG11 1.074 99.15 1.7397 2.3424 5.0274 −1.6729
CG12 1.074 99.16 1.7155 2.2623 4.4330 −1.6793
CG13 1.074 99.19 1.7045 2.2196 4.0466 −1.6824
CG20 0.5336 99.12 1.0534 1.1167 2.7766 −1.0541
CG21 0.2663 98.99 0.8772 0.7775 2.2576 −0.8549
CG30 0.7260 99.83 0.3247 1.8036 4.3489 0.3532
CG31 0.3642 99.71 4.3107 5.8003 3.6808 1.4514
CG32 0.1796 99.55 3.5703 4.5855 2.9438 1.6056
CG40 0.2663 98.55 5.2646 7.2829 7.8631 −6.2807
CG41 0.2663 98.97 1.0484 0.5219 1.6164 −0.8507
CG42 0.2663 98.94 0.5906 0.8316 2.1128 −0.5507
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120,000 cells. The near-wall grid spacingΔs1 is 4 × 10−5 m for these
grids, which makes the overall y� near unity. The difference between
these four grids is only due to the far-field length l; it varies from 25 to
100 chord lengths. Grid details and errors (from the SFine grid data)
are given in Tables 1 and 2.
Figure 11a shows that CG10–CG13 grids have very similar

convergence behavior, again, because these grids have a similar
number of cells and quality. Figure 11a shows that the far-field length
had no considerable effect on the convergence rate in Cobalt.
Figure 11b also shows the error trends with far-field length for grids
CG10–CG13. Increasing the far-field length above 50 chord lengths
has no significant effect on theCL,CD, andCL max errors. Figure 11b
shows that L∕D predictions can be improved by making the far-field
boundary bigger, but its impact becomes smaller above 50c. For all

subsequent grids, a far-field length of 50 chords will therefore
be used.
CG20–CG21 grids were generated by similar grid-generation

methods; however, the near-wall grid spacing Δs1 varies in these

grids. The convergence data of these grids (CG20–CG21) are shown
in Fig. 12a, which shows the convergence improves as y� decreases

from 1 to around 0.26 (CG11 in this figure has y� � 1). The solution
accuracy is also improved with decreasing y�, as shown in Fig. 12b.
Figure 13 compares the lift and drag coefficient predictions of CG21
grid (y� � 0.2663 and containing 134,000 cells) with predictions

from CG1 (y� � 0.2663 and containing 341,000 cells). The results

show that CFD data of the coarse grid match very well with the
medium grid data. Note that CG1 data also match with CFD data of

the SFine grid. These results show that a grid size of around 134,000
cells and y� of 0.26 with well-shaped cells will match the fine data

of [21].
Three unstructured grids (CG30–CG32) were also considered;

these grids were generated by the Delaunay tetrahedralization and
have anisotropic cells near the wall with a growth rate of 1.1. These

grids are very similar, except that they have different initial spacing
near the wall. Grid details and errors are given in Tables 1 and 2.

These grids have around 115,000 cells and have grid quality above
99. Figure 14 compares CG21 (structured) with the CG32

(unstructured). The anisotropic cells near the wall can be seen in this
figure. Note that anisotropic tetrahedral layers are not constant

everywhere; the local extrusion at each point would stop if the cell
size become close to the size of outside isotropic cells.
Figure 15 compares the Cobalt quality plot of CG32 with the

Pointwise skewness quality picture of CG32. Figure 15b shows that
the cells near the wall are extremely skewed, but Cobalt considers

these cells high-quality ones because of the good grid smoothness.
The convergence histories of CG1, CG21, and CG32 are plotted in

Fig. 16.Despite having a poor skewness near thewall, CG32 has very

Fig. 6 Lift and drag coefficients of CG1 and CG2 grids. The structured SFine grid is from [21].

Fig. 7 Density residual convergence (Dρ∕Dt) of CG1 and CG2 grids,
where ρ and t denote density and time, respectively. The structured SFine
grid is from [21].

Fig. 8 Convergence plots of CG1 grid at zero and 8 deg angles of attack.
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similar convergence behavior to CG21, which is a structured grid.
This again confirms that Cobalt convergence does not change much
with the skewness quality. CG1 has better convergence than the other
grids because it has a high resolution compared with CG21
and CG32.
Although CG32 and CG21 have similar quality and convergence,

Table 2 shows that CG32 has much larger errors in the lift and drag

coefficients than CG21. In more detail, Fig. 17 compares the lift and
drag values for grids of CG1, CG21, and CG32. Figure 17 shows that
CG32 match well with CG21 and CG1 data at small angles of attack;
however, for angles above 6 deg, CG32 lift overestimates CG21/CG1
data, and CG32 underestimates drag. Finally, for the structured grids
of CG11, CG20, and CG21, Table 2 shows that the accuracy is
improved by decreasing y� from 1 to 0.26; this, however, does not

Fig. 9 Cobalt grid quality relationship with grid geometry; grid is around trailing edge. In Figs. 9a and 9b, the white cells have the highest quality.
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apply to the unstructured grids. Decreasing the initial spacing makes

the cells near the wall more skewed assuming the wall spacing is

unchanged. Poor skewness would impact the solution accuracy.
The final closed grids considered are of hybrid typewith prismatic

layers near the wall and isotropic cells elsewhere. Three hybrid grids

CG40, CG41, and CG42, were generated. The prismatic layers were

generated by the wall normal extrusion using an elliptic solver. The

outer domain is then gridded by the Delaunay tetrahedralization.

These grids are much coarser than the structured grids of CG10 to
CG21. Grid details and errors are again given in Tables 1 and 2. The
main difference between these grids is the number of prism layers.
Figure 18 shows the grid overview of CG42with 75 prism layers. The

effect of the number of prism layers on the errors can be seen in
Fig. 19, which shows that the accuracy is significantly improved by

Fig. 10 Cobalt grid quality relationship with grid geometry; grid is around leading edge. In Figs. 10a and 10b, the white cells have the highest quality.
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increasing the layers from 25 to 50; however, the accuracy does not
change much by increasing layers from 50 to 75. Figure 20 also
compares the lift and drag coefficients of the hybrid CG42 grid with
predictions ofCG1 andCG21 grids. The results show that predictions
from a hybrid grid with 75 prism layers still match quite well with
expected data.
Finally, Fig. 21 shows the flow solution on the CG1, CG2, CG32,

and CG42 grids at 9 deg angle of attack. For all grids at α � 9 deg,
the boundary layer is separated from the upper surface, and a
clockwise-rotating eddy is formed. Figure 21 shows that eddy size
and pressure coefficients are very similar for the CG1 and CG42
grids; these grids havewell-shaped cellswith 90 degwall angles close
to the wall. Eddies predicted by the CG2 and CG32 are, however,

bigger and smaller than the CG1 eddy, respectively. Therefore, CG2
underestimates and CG32 overestimates the lift predicted by CG1.
Note that the CG2 is a structured grid with poor skewness and wall
orthogonality; CG32 has highly skewed tetrahedral cells at the wall
as well.

B. Open-Inlet Airfoil

The computational domain of this geometry may be considered to
have two parts corresponding to the outside and inside of the airfoil.
These domains are gridded separately in this work. Open grid details
are given in Table 3. The first grids considered are structured; the
outside grid was generated by the wall normal extrusion, and the

Fig. 11 Effects of far-field length l on the solution convergence and errors.

Fig. 12 Effects of initial grid spacing Δs1 on the solution convergence and errors of structured grids.

Fig. 13 Lift and drag coefficients of CG1 (341,850 cells) and CG21 (133,920 cells) grids.

1096 GHOREYSHI ETAL.

D
ow

nl
oa

de
d 

by
 H

Q
 U

SA
FA

/D
FL

IB
/S

E
R

 o
n 

Ju
ly

 2
5,

 2
01

6 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.C

03
33

91
 



inside grid is an algebraic grid nearly uniform in spacing even at the
inside walls. These grids are named OG1–OG5. All these grids have

the same inside grid containing approximately 278,000 cells. OG1–
OG3 have an initial spacing of 4 × 10−5 m at the outside walls, but

the number of layers of constant spacing is different. OG4 and OG5

have five layers of constant spacing at the outsidewalls, but the initial
spacing of these grids is 2 × 10−5 and 1 × 10−5 m, respectively. The

OG1 grid is shown in Fig. 22. OG1 has 25 layers of constant spacing
at the outside walls, which can easily be seen in Fig. 22.
OG1 toOG5 grids contain around 400,000 cells. Figure 23a shows

the convergence histories of OG1, OG2, and OG3 grids compared
with the hybrid fine (“Hfine”) grid (1.7 million cells) convergence.

The convergence comparisons show that all coarse grids converged to

the same values, again due to having similar resolution and quality,
and do differ significantly from the Hfine converged value. In

comparison to the closed-inlet airfoil convergence plots, Fig. 23a

Fig. 14 CG21 and CG32 grids overview.

Fig. 15 Cobalt cell quality vs the cell skewness report of CG32 grid.

Fig. 16 Density residual convergence (Dρ∕Dt) of CG1 (STR with
341,850 cells), CG21 (STR with 133,920 cells), and CG32 (UNSTR with
128,564 cells).
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shows that the open inlet takes a longer time to converge with the

Hfine grid having the quickest convergence.

The effects of the number of constant-spacing layers at the wall

(Ns) on the errors are shown in Fig. 23b. The results show thatNs has

a small effect on the open-inlet solutions. The lift and drag

coefficients of OG1, OG2, and OG3 grids are compared with the fine

grid predictions in Fig. 24. The lift and drag coefficients are split into

the inner and outer surfaces. Notice that inner lift does not change

with the angle of attack; Ghoreyshi et al. [21] showed that flow is

relatively stationary inside, withCp near 1 almost everywhere. For an

open-inlet geometry,when the pressure integral over the outer surface

is completed, a negative drag is resolved,which is opposed to the drag

formed over the closed-inlet geometry. The comparison plots of

Fig. 24 show that coarse grids with uniform spacing inside match

Fig. 17 Lift and drag coefficients of CG1, CG21, and CG32.

Fig. 18 Hybrid grid of CG42 with 75 prismatic layers near the wall.

Fig. 20 Lift and drag coefficients of CG42 grid.

Fig. 19 Solutionerrorsagainstnumberofprism layers in thehybridgrids.
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Fig. 21 Flow solutions of CG1, CG2, CG32, and CG42 grids at α � 9 deg.

Fig. 22 OG1 grid overview.

Fig. 23 Effects of initial grid spacingNs on the solution convergence and errors of open airfoil grids. These plots and those of Fig. 24 include results with
the hybrid fine grid (1.7 million cells) of [21].
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very well with the fine grid force coefficients at inside and

outside walls.

OG2, OG4, andOG5 have approximately 278,000 cells inside and

very similar grids outside; in these grids,Ns � 5, and the growth rate
is 1.1. However, the initial grid spacing is different; y� values of these

grids are given in Table 4 and range from 1 for theOG2 to 0.23 for the

OG5. The effects of y� on the errors are shown in Fig. 25 and

compared with trends of closed-inlet solutions. Figure 25 shows that

the errors of the open-inlet grids are slightly reduced by decreasing

y�; however, the errors for all y� values considered are small and less

than 2%. On the other hand, the solution accuracy of the closed-inlet

grid significantly changeswith y�. A possible explanation ofwhy the

open-inlet geometries are less sensitive to y� than closed-inlet can be

offered from the flow solutions. Figure 26a shows the flow

streamlines of OG5 grid at α � 9 deg. At moderate to high angles of

attack, flow enters the open section of the open-inlet and then exits

from the upper and lower surfaces. This makes flow separated over

the upper and lower surface right at the inlet. The closed-inlet

geometry at high angles of attack also shows a separated flow region

right at the inlet due to the inlet sharp angle; however, the separated

region is significantly smaller than those occurred on the open-inlet

airfoils. In the closed inlet, the separated eddy size largely depends on

the predicted boundary layer at the inlet wall surface; this makes the

flow solutions very sensitive to the initial grid spacing and viscous

layer used at the inlet surface.

The OG5, OG10, OG11, and OG12 grids were used to study the

effect of inside grid resolution on the overall solutions. All these grids

have very similar grids outside, but inside grid changes from 278,000

to 22,000 cells. This is achieved by reducing the inside wall grid

dimensions. The OG12 grid is shown against OG5 in Fig. 27.

Figure 28a shows that the density residual on the OG12 (coarse grid)

is not reduced as low as OG5 and the fine grid; however, the accuracy

is still as good as others as shown in Fig. 28b, which shows OG12

errors from the fine grid are less than 1%. This means that the open-

inlet solution is not very sensitive to the number of cells inside.

To investigate the inside grid type on the solution,OG20 andOG21

grids were also generated; these grids again have a structured grid

outside as the previous grids, but the inside was gridded by the

Delaunay tetrahedralization. OG20 has only 9800 tetrahedra cells

inside; the grid is shown in Fig. 29a. Table 1 and Fig. 30 show that

OG20with coarse tetrahedra cells inside still matchwith the fine data.

Therefore, solutions do not dependmuch on the inside cell resolution

or cell type. Figure 26b shows the flow solutions of OG20 at

α � 9 deg. This figure shows that the flow inside the airfoil is

stationary almost everywhere, as predicted by other grids; therefore,

the flow solution should not changemuchwith inside grid resolution.

Fig. 24 Lift and drag coefficients of OG1, OG2, and OG3.

Table 3 Open grid detail (l∕c � 100 and GR � 1.1 for all grids)

Grid Outside grid Inside grid Δs1 Ns Number of cavity cells Number of total cells

HFine Hybrid Hybrid 1e − 5 — — — — 1,782,199
OG1 STR, elliptic STR, uniform 4e − 5 25 278,620 421,840
OG2 STR, elliptic STR, uniform 4e − 5 5 278,620 403,240
OG3 STR, elliptic STR, uniform 4e − 5 0 278,620 399,520
OG4 STR, elliptic STR, uniform 2e − 5 5 278,620 407,500
OG5 STR, elliptic STR, uniform 1e − 5 5 278,620 416,260
OG10 STR, elliptic STR, uniform 1e − 5 5 120,384 285,028
OG11 STR, elliptic STR, uniform 1e − 5 5 56,000 194,188
OG12 STR, elliptic STR, uniform 1e − 5 5 22,000 148,262
OG20 STR, elliptic UNSTR 1e − 5 5 9,812 137,058
OG21 STR, elliptic UNSTR 1e − 5 5 5,209 136,520
OG22 UNSTR UNSTR 1e − 5 — — 5,275 118,202
OG40 Hybrid UNSTR 1e − 5 — — 5,275 98,620

Table 4 Open grid solution details

Error, %

Grid y� Quality CL CD L∕D CL max

HFine 0.0656 99.83 — — — — — — — —

OG1 0.9490 99.66 0.7146 1.1728 1.7029 −0.4407
OG2 0.9495 99.69 0.9527 1.4604 1.9284 −0.5427
OG3 0.9501 99.70 1.2356 1.6935 2.3153 −0.7218
OG4 0.4721 99.66 0.4549 0.5146 0.5746 −0.1788
OG5 0.2360 99.59 0.4232 0.3767 0.4536 −0.1312
OG10 0.2360 99.26 0.4269 0.3506 0.4322 −0.0934
OG11 0.2359 98.85 0.4430 0.4462 0.5599 −0.1770
OG12 0.2357 98.86 0.5402 0.4694 0.8619 −0.4866
OG20 0.2360 98.92 0.4994 1.5627 2.6723 −0.1016
OG21 0.2360 98.91 0.4323 1.8874 3.8378 −0.1263
OG22 0.1599 99.35 3.4452 1.1538 2.6855 1.7791
OG40 0.2364 98.90 1.0078 1.5233 3.2509 0.3833
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Fig. 25 Effects of initial grid spacing Δs1 on the solution errors of closed- and open-inlet grids.

Fig. 26 Flow solutions of OG5, OG20, OG22, and OG40 grids at α � 9 deg. The time-averaged pressure coefficients Cp are shown.
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The OG22 grid has unstructured cells inside and outside. The
outside is gridded by the Delaunay tetrahedralization and has
anisotropic layers at the wall. Inside cells are isotropic tetrahedra
cells. The grid and solutions are shown in Figs. 29b and 30,
respectively. Figure 30 shows that the forces on the outer surface of
the airfoil and therefore total lift and drag do not match with Hfine
data everywhere. This is probably due to having highly skewed
tetrahedral cells near the outer walls. The flow solution on the OG22
grid is also shown in Fig. 26c for α � 9 deg. The figure shows that
the flow is separated from the upper surface, and a clockwise-rotating
eddy is formed at this angle; however, the eddy size and septation do
notmatchwith those predicted byOG5 andOG20 grids. Note that the

eddy formed over the open-inlet airfoil is much bigger than those
predicted over the closed-inlet airfoil at α � 9 deg.
The final grid, OG40, is a hybrid grid outside and unstructured

inside. The viscous grid on the outsidewall was generated by thewall
normal extrusion; it has 75 layers. The rest of the outside domain is
gridded by the Delaunay grid generator. An overview of the grid is
shown in Fig. 31. The convergence solution on this grid is plotted in
Fig. 32, which shows that the residual reduction for the OG40 and
OG20 grids are the same; however, residual reduction of these grids is
not as low as OG1 or the fine grid. On the other hand, the OG20 grid
(with unstructured cells inside) and OG40 hybrid grid exhibit a faster
convergence rate than the OG1 structured grid. The lift and drag

Fig. 27 OG5 (with 410,260 cells) grid overview compared to OG12 (with 148,262 cells).

Fig. 28 Effects of cavity cell numbers on the solution convergence and errors of open airfoil grids.

Fig. 29 Overview of OG20 and OG22 grids.
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coefficients of the OG40 are also compared with the fine and OG1
grid in Fig. 33, which shows that the hybrid grid matches well with
data from the other grid data; there are very small discrepancies in lift
coefficients in the poststall region. Figure 26d shows the flow
solution over this grid at α � 9 deg. Note that the eddy size at this
angle is bigger than the viscous layer generated with 75 prismatic
layers; this probably explains the small discrepancies between this
grid and those of the structured type.

VI. Conclusions

This work provides an overview of the grid quality and resolution
effects on the aerodynamic modeling of ram-air parachute canopies.
The computational fluid dynamics simulations were performed using
the Cobalt flow solver on two-dimensional canopy sections with
open and closed inlets. The simulation results show that Cobalt grid
quality (ranging from zero to 100) depends mainly on the grid

Fig. 31 OG40 grid overview.

ITER

D
 / 

 D
t

0 5000 10,000 15,000 20,000
10-3

10-2

10-1

100

101

102 Hybrid fine (1.7 million cells)
OG1 - STR, 278,620 cavity STR cells
OG20 - 9,812 cavity UNSTR cells
OG40 - Hybrid, 5,275 cavity UNSTR cells

Fig. 32 Density residual on the OG1, OG20, and OG40 grid as well as
the Hfine grid.

Fig. 33 Lift and drag coefficients predicted by the hybrid OG40 grid.

Fig. 30 Lift and drag coefficients of OG5, OG12, OG20, and OG22.
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smoothness but not the skewness or the wall orthogonality.
Increasing the grid resolution and grid quality (smoothness) and
decreasing the initial grid spacing at the wall (y�) helps to reduce the
density residual magnitude. The results showed that, although a high
quality grid ofCobalt leads to a better convergence, it does not always
lead to a better accuracy. The solution accuracy will changewith grid
resolution and smoothness as well as skewness and the wall
orthogonality.
The results of this work showed that the solutions of coarse

structured and hybrid grids (around 100,000 cells) can match well
with prediction of fine grids containing a few million cells. These
coarse grids have appropriate y� values, good smoothness,
skewness, and wall orthogonality. Although unstructured grids with
anisotropic cells near the wall have very good grid quality in Cobalt,
they have the worst accuracy between considered grids because of
poor skewness at the walls. The results also showed that, in
comparison to the closed inlets, the open geometry solutions are less
sensitive to the initial grid spacing and number of constant spacing
layer at the outside walls. Also, the solutions do not change with
inside grid resolution and type. However, a grid with anisotropic
layers at the outside walls has again the worst accuracy between
considered grids.
Results from this research, which included three different

topologies (structured, unstructured, and hybrid) applied to both
closed and open airfoil geometries, suggest several best practices to
follow for creating efficient viscous grids. A computational domain
with a radius of approximately 50 chord lengths produced accurate
values for L∕D, the figure of merit. Cell skewness has a dramatic
effect on accuracy with an order of magnitude decrease in L∕D
between the structured girds, CG1 (normal extrusion, elliptic) and
CG2 (multiblock, algebraic). Skewness is especially important for
the grid elements near a wall boundary. To resolve boundary layers,
1) use a geometry-conforming mesh with good wall orthogonality;
2) select a y� no greater than 1, but residuals converged twice as fast
for y� ≈0.25; and 3) smoothness, as measure by growth rate of the
grid elements, should be no more than 1.2, with 1.1 yielding the best
resolution when coupled to at least 50 prism layers (greater than 50
layers only resulted in marginally better solutions).
Although these recommendations often reinforce results seen in

previous research, the application to both the closed and open airfoils
provided additional insight. In particular, the open geometries are not
as sensitive to the dependence on y�. Additionally, because of
quiescent flow inside the open inlet geometry, a greatly reduced
resolution may be used. For future 3-D simulations, in which there
will be between seven and 20 open-inlet airfoil sections, the
computational savings will be substantial.
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