Large and Detached Eddy Simulations of a Circular Cylinder Using Unstructured Grids

Robert P. Hansen
United States Military Academy
West Point, NY

James R. Forsythe
United States Air Force Academy
Colorado Springs, CO

41st AIAA Aerospace Sciences Meeting and Exhibit
6 – 9 January 2003
Reno, Nevada
Large and Detached Eddy Simulations of Flow over a Circular Cylinder Using Unstructured Grids

R. P. Hansen*
Department of Civil and Mechanical Engineering
United States Military Academy
West Point, New York 10996
Robert.Hansen@usma.edu

J. R. Forsythe†
Department of Aeronautics
United States Air Force Academy
USAF Academy, Colorado 80840
Jim.Forsythe@usafa.edu

ABSTRACT

Turbulence resolving calculations are performed on the flow past a circular cylinder at sub- and super-critical conditions using the unstructured finite-volume solver Cobalt. The primary goal of the research is to assess the performance of unstructured grids for turbulence resolving calculations such as large eddy simulation and detached-eddy simulation. A sub-critical Reynolds number of 3900 is simulated using large eddy simulation with no explicit subgrid scale model. The inherent numerical dissipation of the code is used as the subgrid scale model. A systematic grid refinement was performed refining simultaneously in all coordinate directions by \(\sqrt{2} \). The three resulting grids were used to demonstrate the effect of grid resolution on the solution. For sufficiently dense grids, the Strouhal number, time-averaged drag, back pressure, and recirculation zone length compare well with experimental results and results for similar computations conducted using structured grids. Turbulence statistics in the near wake were also recorded and compare favorably with experimental data. Grid convergence was not obtained for turbulent statistics and recirculation zone size, but the two finest grids compared closely for drag and surface pressures. A super-critical case was computed using Spalart-Allmaras based detached-eddy simulation (DES). DES is a hybrid Reynolds-averaged and large eddy simulation approach. The boundary layers were handled in RANS mode and were assumed to be fully turbulent. The time-averaged coefficient of pressure and drag fell within two separate sets of experiments and closely matched a similar set of computations on structured grids using a high order solver.

Introduction

Numerical simulation of the flow around complex configurations offers a highly cost effective tool for analysis, e.g., a means to screen configurations prior to costly and time-consuming flight tests. As computer speeds have increased, larger more complex problems can now be handled by computational fluid dynamics (CFD). However, the more complex geometries have created a larger burden on the generation of grids. Unstructured grids offer to greatly alleviate this burden by reducing the complexity of grid generation. Unstructured grids also offer excellent parallel performance due to the ease of load balancing, and a great potential for grid adaption. The unstructured approach is not without its downsides, however. The majority of unstructured codes are limited to second order spatial accuracy due to the difficulty in developing higher order algorithms for unstructured grids. This could potentially have a large impact on turbulence resolving calculations, such as those performed here. Also, memory requirements are generally higher than for structured grids. Finally, since unstructured solvers have a shorter history than structured solvers, lower confidence seems to be placed in them by many. Despite these shortcomings, unstructured solvers have been handling complex geometries fairly successfully. As confidence in these methods is gained, it is natural to attempt to apply them to increasingly complex problems, such as the calculation of massively separated turbulent flows.

Most current engineering approaches to prediction of turbulent flows are based on solution of the Reynolds-averaged Navier-Stokes (RANS) equations. The turbulence models employed in RANS methods necessarily parameterize the entire spectrum of turbulent motions. While often adequate in steady flows with no regions of flow reversal, or possibly exhibiting shallow separations, it appears inevitable that RANS turbulence models are unable to accurately predict phenomena dominating flows characterized by massive separations. Unsteady, massively separated flows are characterized by geometry-dependent and three-dimensional turbulent eddies. These eddies, arguably, are what defeats RANS turbulence models, of any complexity.

To overcome the deficiencies of RANS models for predicting massively separated flows, Spalart et al.
The unstructured finite-volume solver Cobalt1 has been used in conjunction with DES successfully on a number of complex problems, including a supersonic base flow3, delta wing vortex breakdown2, a square with rounded corners3, the F-15E at high angle of attack4, the F-18C with vortex breakdown5, and the F/A-18E with unsteady shock buffet6. Many of these flows have focused on comparison to mean quantities, such as lift and drag, or quantities such as surface pressures due to the lack of detailed experimental data at high Reynolds numbers. These quantities are less sensitive to numerical and/or modeling errors, however, than off-body quantities and turbulent statistics. Comparison to turbulent kinetic energy was made in two of the studies7,8 with encouraging agreement to experiments. However, since either no analogous results were available on structured grids, or other results were using different modeling approaches, it was difficult to determine if the unstructured approach was performing as well as a structured approach could have with a similar grid resolution. This provided the motivation for the current research – calculation of sub- and super-critical flow over a cylinder. Since numerous researchers have treated the sub-critical flow with structured solvers, it has received the bulk of the attention in this research, although the super-critical flow is of greater engineering interest (at least for the aircraft industry).

The unsteady flow over a circular cylinder provides a rigorous test case for numerical simulation. Several experiments provide a very complete data set for flow over a circular cylinder at Reynolds number 3900, based on the cylinder diameter. Norberg12 studied the effect of freestream turbulence on the measured flow, and provides surface pressure data as well as frequency of shedding for a range of Reynolds numbers. Krothapalli \textit{et al.}13 and Lourenco and Shih14 measured time-averaged velocities and Reynolds stresses in the cylinder near-wake at Reynolds number 3900. Ong and Wallace15 provide experimental data at the same Reynolds number at positions further downstream of the cylinder, beyond the recirculation zone. At the Reynolds number of 3900 the attached boundary layer on the cylinder surface is laminar, the separated shear layers are in the early stages of transition, and the wake is fully turbulent.16 At this Reynolds number, the boundary layer is thick enough to be easily resolved by the computational grid and the experimental off-body data (pressure, velocities, Reynolds stresses) are also close enough to the cylinder so that an excessive number of computational cells in the cylinder wake can be avoided. The low Reynolds number ensures that the attached boundary layers are laminar, and that the subgrid scale stresses of a large eddy simulation will be relatively low. These two facts reduce the burden on the turbulence model, making the results more dependent on the combination of the numerics and grid than on the model.

Numerous computational studies have been conducted using structured grids for a circular cylinder in crossflow at Re=3900. The computational results of Breuer17, Beaudan and Moin18, Mittal19 and Kravchenko and Moin20 for Reynolds number 3900 record the advantages and disadvantages of various numerical schemes available on structured grids. Breuer17 used a Smagorinsky subgrid-scale LES model with five different flux calculation schemes on a structured grid. He showed that the type of numerical scheme had a large impact on features of the time-averaged flowfield and parameters such as drag. Central difference approximation schemes produced more accurate results, while the schemes employing upwinding tended to shorten the recirculation bubble and predict excessive drag compared to experimental results. He also used the dynamic subgrid-scale LES model with a central difference flux calculation. The dynamic model produced time-averaged values that were closer to experimental results than the Smagorinsky model.

Beaudan and Moin18 used a finite difference approach with fifth- and seventh-order upwind biased schemes to discretize the convective terms. The simulations for three cases -- no turbulence model, Smagorinsky LES model, and dynamic LES model -- all over-predict the length of the recirculation bubble and the value of the maximum streamwise velocity magnitude along the wake centerline.

Still more challenging is the study of the circular cylinder at super-critical Reynolds numbers. The thin attached turbulent boundary layer becomes cost prohibitive for LES since the approach requires a grid fine enough to resolve eddies at least as small as the boundary layer thickness. Yet accurate treatment of the turbulent boundary layer is required to get accurate separation, and therefore drag predictions. This motivates the use of DES which uses the RANS model to predict the growth and separation of the boundary layer. Further from the body, the model transitions to LES mode, enabling the resolution of the geometrically

AIAA-2003-0775

American Institute of Aeronautics and Astronautics
dependant flow features. Two experiments21,22 provide
time-averaged pressure and force data at the super-
critical Reynolds numbers of 8.5x106 and 7.5x106
respectively. Recent DES studies by Travin \textit{et al.}23
have been conducted on structured grids using a fifth-
order upwind code. Their supercritical calculations were
performed at Reynolds numbers of 140,000 and 3x106.
At a Reynolds number of 140,000 the flow would
normally be expected to be sub-critical, however Travin
\textit{et al.}23 set up the simulation so the RANS model would
produce a fully turbulent boundary layer, thus capturing
the physics of the supercritical flow. Squires \textit{et al.}6
simulated the flow over a circular cylinder at
Re=800,000 using \textit{Cobalt} with DES on a structured grid,
but only a qualitative analysis of the solution was
published.

All the previously cited numerical studies on the
cylinder have been conducted using structured grids.
Much less work has been devoted to the numerical study
of this fundamental geometry using unstructured grids.
Hansen and Long24 studied the three-dimensional
circular cylinder at Re=3900 using an unstructured,
finite-volume code that utilized Roe’s flux difference
splitting upwinding scheme25 and large-eddy simulation
with a constant coefficient Smagorinsky model. Their
results indicated the scheme was too dissipative, at least
at the grid resolutions they used, to accurately capture
the drag on the cylinder and some Reynolds stress
components. The fact that the grid was coarse, and no
refinement was performed made the work inconclusive.

The current work pursues the sub- and supercritical
flow over the cylinder using the commercial \textit{Cobalt} code
in an attempt to further explore the ability of
unstructured algorithms/grids to accurately simulate
highly separated, unsteady, turbulent flow using
turbulence resolving methods. The lack of grid
refinement in the work of Hansen and Long24 is
addressed here by performing a systematic grid
refinement using the approach outlined in Morton \textit{et al.}26

\textbf{Computational Approach}

\textbf{Solver}

The compressible Navier-Stokes solver forming the
backbone of this effort is \textit{Cobalt}1. \textit{Cobalt} is a
commercial version of Cobalt\textsubscript{60} -- a compressible flow
solver developed at the Air Force Research Laboratory
in support of the Common High Performance Software
Support Initiative (CHSSI). Strang \textit{et al.}1 validated the
code on a number of problems. Tomaro \textit{et al.}27 converted
Cobalt\textsubscript{60} from explicit to implicit time integration,
enabling CFL numbers as high as one million. Grismer
\textit{et al.}28 then parallelized the code, yielding a linear
speedup on as many as 1024 processors. Forsythe \textit{et al.}29
provided a comprehensive testing/validation of the
RANS models. The Parallel METIS domain
decomposition library of Karypis and Kumar30,31 is
incorporated in \textit{Cobalt}. ParMetis divides the grid into
nearly equally sized zones that are then distributed one
per processor.

Only a brief overview of the basic solver is provided
here. Details of the solver algorithm are found in
reference 1. The numerical method employed in \textit{Cobalt}
is a cell-centered finite volume approach applicable to
arbitrary cell topologies (e.g. hexahedra, prisms,
tetrahedra). The spatial operator uses the exact Riemann
solver of Gottlieb and Groth32, least squares gradient
calculations using QR factorization to provide second-
order accuracy in space, and TVD flux limiters to limit
extremes at cell faces. A point implicit method using
analytic first-order inviscid and viscous Jacobians is
used for advancement of the discretized system.
For time-accurate computations, a Newton sub-iteration
scheme is employed. The method is second order
accurate in time.

\textbf{Large and Detached-Eddy Simulation Details}

The large eddy simulations used in this study contain
no explicit subgrid scale model. The dissipation of
the numerical algorithm is relied upon to remove energy
from the resolved scales, mimicking the effect of
turbulence at the subgrid scales. This approach is similar
to the monotone integrated large eddy simulation
(MILES) method33,34. Since no attempt has been made
to demonstrate the monotonicity of the \textit{Cobalt} algorithm,
it is not MILES in the strict sense.

The Detached-Eddy Simulation (DES) technique used
in \textit{Cobalt} is that proposed by Spalart \textit{et al.}3. The
technique calls upon both Large-Eddy Simulation (LES)
and Reynolds Averaged Navier Stokes (RANS)
turbulence modeling. The RANS model is based on the
Spalart-Allmaras35 (hereafter referred to as S-A) one-
equation model. This model solves a single partial
differential equation for a working variable \bar{V} which is
related to the turbulent viscosity. The model includes a
wall destruction term that reduces the turbulent viscosity
in the viscous sublayer and log layer. The model
contains terms that allow the user to specify a transition
location to effectively trip the flow. With the trip terms
turned off, the model takes the form,
\[
\frac{D\tilde{v}}{Dt} = c_{b1}S\tilde{v} - c_{w1}f_w \left[\frac{\tilde{v}}{d}\right]^2 + \frac{1}{\sigma} \left[\nabla \cdot ((\nu + \tilde{v})\nabla \tilde{v}) + c_{b2} (\nabla \tilde{v})^2 \right]
\]

The turbulent kinematic viscosity is obtained from,

\[\nu_t = \tilde{v} f_{v1}, \quad f_{v1} = \frac{X^3}{X^3 + c_{v1}}, \quad X \equiv \frac{\tilde{v}}{V}\]

where \(S\) is the magnitude of the vorticity, and the modified vorticity is,

\[\tilde{S} = S + \frac{\tilde{v}}{\kappa^2 d^2} f_{v2}, \quad f_{v2} = 1 - \frac{X}{1 + X f_{v1}},\]

where \(d\) is the distance to the closest wall. The wall destruction function \(f_w\) is,

\[f_w = g \left[\frac{1 + c_{w3}^6}{g^6 + c_{w3}^6}\right]^{\frac{1}{6}}\]

and

\[g = r + c_{w2} (r^6 - r), \quad r \equiv \frac{\tilde{v}}{S \kappa^2 d^2}.\]

The model coefficients are,

\[c_{b1} = 0.1355, \quad \sigma = 2/3, \quad c_{b2} = 0.622, \quad \kappa = 0.41, \quad c_{w1} = c_{b1} / \kappa^2 + (1 + c_{b2}) / \sigma, \quad c_{w2} = 0.3, \quad c_{w3} = 2, \quad c_{v1} = 7.1\]

The wall destruction term presented above is proportional to \((\tilde{v} / d)^2\), where \(d\) is the distance to the wall. When this term is balanced with the production term, the eddy viscosity becomes proportional to \(\tilde{\delta}d^2\), where \(\tilde{\delta}\) is the local strain rate. The Smagorinsky LES model varies its sub-grid scale (SGS) turbulent viscosity with the local strain rate, and the grid spacing: \(v_{SGS} \propto \tilde{\delta} \Delta^2\), where \(\Delta\) generally depends on the local grid spacing. If \(d\) is replaced with \(\Delta\) in the wall destruction term, and production balances dissipation, the S-A model will act like a Smagorinsky LES model.

To exhibit both RANS and LES behavior, \(d\) in the S-A model is replaced by

\[\tilde{d} = \min(d, C_{DES} \Delta)\]

When \(\tilde{d} <= \Delta\), the model acts in a RANS mode and when \(\tilde{d} >= \Delta\) the model acts in LES mode. To retain RANS behavior in the boundary layer the grid spacing is taken as the longest length scale of the cell (i.e. \(\Delta = \max(\Delta_x, \Delta_y, \Delta_z)\)).

Forsythe et al.\(^8\) implemented DES into Cobalt. To define the grid spacing they took \(\Delta\) as the largest distance from the current cell center to any of the neighboring cell centers and used the \(C_{DES}\) constant of 0.65, as recommended by Shur et al.\(^{16}\).

Simulations and Results

Re=3900 Simulations

A circular cylinder in a crossflow at Reynolds number 3900 is simulated at Mach = 0.1. The cylinder is four diameters in span. A periodic boundary condition is placed on the computational surfaces at the cylinder ends. Table 1 describes the grids used for this study. Each refinement was achieved by increasing the cell density by a factor of \(2\) in each coordinate direction, resulting in volume cell counts of 442,018, 1,230,710, and 3,258,000, for grids A, B, and C, respectively. VGRIDns was used to rapidly create the three grids using the method outlined in reference 26. Figure 1 shows the cylinder surface grid for grid A with the coordinate system used. Flow is in the positive x-direction.

![Figure 1. Surface Mesh of Cylinder for Grid A](image)

Figures 2 and 3 compare the surface grid at the cylinder end (periodic boundary) for the lowest and highest cell densities used (grids A and C respectively). The computational grid consists of a dense clustering of prismatic cells in the boundary layer and tetrahedral...
cells elsewhere. Although the prismatic cells extend further from the cylinder surface in grid A than in grid C (figure 3), the distance of the first cell center from the wall and the boundary layer growth rate were held constant for all three grids. The farfield boundaries are placed 20 diameters from the cylinder surface.

Figure 2. Comparison of Grids A and C (grid A – top, grid C – bottom)

Figure 3. Close-Up View of Grids A and C (grid A – top, grid C – bottom)

All computations were done on the Aeronautical Systems Center (ASC) Major Shared Resource Center (MSRC) Compaq cluster or the Maui High Performance Computing Center’s IMB SP3 using 32 to 64 processors. A non-dimensional time step of 0.01 (based on freestream velocity and cylinder diameter) was used for all cases, providing approximately 500 data points in time per cycle of shedding. Three Newton subiterations were used to reduce linearization errors of the implicit scheme. Each case required approximately 14×10^6 seconds of CPU time per iteration per cell. All time-averages are computed using at least 40 cycles of shedding, or 200 non-dimensional time units. Because experimental data typically uses time-averaging over a much larger number of cycles, e.g. Ong and Wallace15 reported data averaged over 7680 cycles of shedding, spanwise averaging of the computational results is also performed.

Table 1 summarizes key time-averaged parameters for the current simulations, other numerical results, and experiment. The time-averaged drag (C_D) is based on the projected area of the cylinder. The base pressure coefficient, C_{pb}, is defined as the coefficient of pressure at the point on the cylinder surface furthest downstream. The Strouhal number is computed using $St = fD/U_{\infty}$, where f is the shedding frequency, D is the cylinder diameter, and U_{∞} is the freestream velocity. The quantity L_r/D is the non-dimensional length of the recirculation zone in the cylinder wake.

The first three rows of data in Table 1 are from the present study. The additional cases, from previous numerical works, are provided for comparison and discussion. Case numbers used in this paper are identified on the far left. Case identifiers used by the authors cited, if any, are identified in parenthesis. The cases in Table 2 by Breuer17 used the finite volume method with LES and either a dynamic subgrid scale (SGS) model or no SGS model. Cases 4 and 7 used 871,200 cells providing approximately 10 nodes per diameter of span while cases 5 and 8 used a grid with 1,742,400 cells with approximately 20 nodes per diameter of span. Breuer did not report the Strouhal number for these cases but stated they were within the experimental range. The cases by Beaudan and Moin18 used a fifth-order upwind differencing algorithm with a Smagorinsky (case 9), dynamic (case 10) or no SGS model (case 6). Their grid contained 940,032 nodes with 15 nodes per diameter of span. The only comparison case using unstructured grids by Hansen and Long24 used a volume grid consisting of 308,000 tetrahedral cells.

Cases 2 and 3 using Cobalt produce results that fall within the ranges of experimental uncertainty, with the exception of the coefficient of back pressure for case 3. Case 2 appears to perform as well as any of the other simulations, with or without a subgrid scale model. The accuracy of the drag improves greatly with the increased grid resolution from grid A to grid B. Only a minor change in drag results from the further refinement used in case 3. All of the cases in Table 2 show a strong correlation between the drag coefficient, the base pressure coefficient, and the length of the recirculation
zone. Overestimation of the drag is accompanied by a base pressure coefficient that is too low, and a recirculation zone that is too short.

The drag and lift coefficient histories are shown in figure 4. Time (t) is non-dimensionalized by U_∞/D. The time-averaging is started at $t=100$. The density of the grid not only affects the time-averaged value of the force coefficient, but also the amplitude and the frequency content of the oscillations. The trend is for lower grid densities to produce larger amplitudes in both lift and drag. It is not apparent, at least by examining the lift curve for grid C, that even one cycle of the low frequency modulation has been completed. As already cited in the literature, this feature can limit the resolution to which time-averaged drag values can be compared. To ensure the time-averaged quantities were well converged, grid C was run for approximately 33 more cycles of shedding at a lower time step of $\Delta t = 0.007$ (figure 5). Performing time-averaging over the cycles of shedding with the lower time step produced the same results as time-averaging with the standard time step of $\Delta t = 0.01$. This provides some confidence in the baseline timestep of 0.01 for the rest of the calculations.

Table 1. Re=3900 Three-Dimensional Cylinder Time-Averaged Results

<table>
<thead>
<tr>
<th>Case</th>
<th>Grid Details</th>
<th>C_D</th>
<th>C_{pb}</th>
<th>St</th>
<th>L_r/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cobalt – Grid A</td>
<td>87×28</td>
<td>$4D$</td>
<td>1.23</td>
<td>-1.28</td>
</tr>
<tr>
<td>2</td>
<td>Cobalt – Grid B</td>
<td>100×40</td>
<td>$4D$</td>
<td>1.02</td>
<td>-0.91</td>
</tr>
<tr>
<td>3</td>
<td>Cobalt – Grid C</td>
<td>154×56</td>
<td>$4D$</td>
<td>1.01</td>
<td>-0.83</td>
</tr>
<tr>
<td>4</td>
<td>Breuer17 (Case C1)</td>
<td>$165 \times 165 \times 32$</td>
<td>πD</td>
<td>1.144</td>
<td>-1.115</td>
</tr>
<tr>
<td>5</td>
<td>Breuer17 (Case D1)</td>
<td>$165 \times 165 \times 64$</td>
<td>πD</td>
<td>1.156</td>
<td>-1.164</td>
</tr>
<tr>
<td>6</td>
<td>Beaudan and Moin18</td>
<td>$144 \times 136 \times 48$</td>
<td>πD</td>
<td>0.96</td>
<td>-0.89</td>
</tr>
<tr>
<td>7</td>
<td>Breuer17 (Case C3, dynamic)</td>
<td>$165 \times 165 \times 32$</td>
<td>πD</td>
<td>1.071</td>
<td>-1.011</td>
</tr>
<tr>
<td>8</td>
<td>Breuer17 (Case D3, dynamic)</td>
<td>$165 \times 165 \times 64$</td>
<td>πD</td>
<td>1.016</td>
<td>-0.941</td>
</tr>
<tr>
<td>9</td>
<td>Beaudan and Moin18 (Smag.)</td>
<td>$144 \times 136 \times 48$</td>
<td>πD</td>
<td>0.92</td>
<td>-0.81</td>
</tr>
<tr>
<td>10</td>
<td>Beaudan and Moin18 (Smag.)</td>
<td>$144 \times 136 \times 48$</td>
<td>πD</td>
<td>1.00</td>
<td>-0.95</td>
</tr>
<tr>
<td>11</td>
<td>Hansen and Long24 (Smag.)</td>
<td>87×16</td>
<td>$4D$</td>
<td>1.31</td>
<td>-1.34</td>
</tr>
</tbody>
</table>

Table 1. Re=3900 Three-Dimensional Cylinder Time-Averaged Results. Grid sizes are in terms of nodes in the radial, azimuthal, and axial (spanwise) directions. Unstructured grids contain only azimuthal and axial grid dimensions.
Figure 6 shows the coefficient of pressure on the cylinder surface for the different grids used. The experimental data of Norberg at Re=3000 and Re=8000 provide pressure data over the entire surface. Only the coefficient of back pressure (C_p at $\theta=180$) is available for Re=3900. The grid C results match very closely with the Re=3000 experiment, particularly beyond 78 degrees. The actual Re=3900 pressure coefficient line is judged to lie somewhere close to midway between the grid B and grid C results based on the Re=3900 base pressure coefficient.

![Figure 6. Coefficient of Pressure on the Cylinder Surface. Experiment is from Norberg.](image)

Figure 6. Coefficient of Pressure on the Cylinder Surface. Experiment is from Norberg.

Figure 7 plots the span-averaged streamwise velocity component in the x-y plane for selected cases from Table 1. Of the three COBALT cases, the structure of the wake velocity is most closely calculated by case 2 (grid B). Case 3 (grid C) tends to increase the magnitude of the wake velocity and displace the location of the maximum magnitude downstream. The other computational cases in figure 7 all use upwind algorithms, with cases 6, 9, and 10 being of higher order.

![Figure 7. Streamwise Velocity in the Wake at z/D=0.](image)

Figure 7. Streamwise Velocity in the Wake at z/D=0.

Figures 8 through 11 compare the computed and experimentally measured Reynolds stress components in the y-z plane located at $x/D=1.54$. Each stress component is normalized by U_∞^2. In the case of the spanwise ($\overline{\nu'v'}$) normal component, experimental data is not available so figure 11 only includes numerical simulations. The magnitude of the exact peaks, and in some cases the location of the peaks, are not precisely defined by the experimental data. The comparisons are, therefore, left as qualitative and used to further demonstrate the effects of the grid density. The streamwise Reynolds stress component ($\overline{u'u'}$) is captured with good accuracy by grids B and C, with grid A noticeably underestimating the peaks.

![Figure 8. Streamwise Reynolds Stress in the x/D=1.54 Plane.](image)

Figure 8. Streamwise Reynolds Stress in the x/D=1.54 Plane.

The shear component ($\overline{u'\nu'}$) in figure 9 shows a diminished amplitude of the peaks, below experimental values, when using higher grid resolutions. This could be due to the changes in the mean flow as the recirculation length increases with increasing grid resolution. Figure 10 indicates a reduced level of three-dimensionality in the near-wake when using grid A. The reduced spanwise stresses (figure 11) contribute to the higher values of the $\overline{u'w'}$ and $\overline{w'w'}$ components when using grid A. This condition has been shown by Mittal and Balachandar to lead to a larger magnitude of base pressure coefficient and higher drag, which is precisely
the result encountered here. The increased resolution of grid B corrects the $w'w'$ and $v'v'$ components, however, further refinement leads to an amplitude that is much too low in the $w'w'$ component.

Figure 9. Shear Reynolds Stress in the x/D=1.54 Plane.

Figure 10. Lateral Reynolds Stress in the x/D=1.54 Plane

Figures 12 and 13 show contours of instantaneous vorticity magnitude for the different grids used. Both figures are at times when the lift is zero and decreasing. Figure 12 is a cross section of the x-z plane at the cylinder centerspan and figure 13 is a top view of the x-y plane at z/D=0. The figures clearly show a difference in vortex structure. In the immediate wake, figure 12 does not indicate the scale of the structure is finer in grid C than in grid B, however, grid C allows for increased structure along the span as seen in figure 13. Stronger vortex structures traverse to the cylinder axis beyond x/D =4 are particularly evident from figure 13 when comparing grids B and C.

Figure 11. Spanwise Reynolds Stress in the x/D=1.54 Plane.

Figure 12. Contours of vorticity magnitude in the y/D=2 plane. Red indicates higher vorticity magnitude.
Figure 13. Contours of vorticity magnitude in the cylinder wake, \(z/D=0\) plane. Flow is from top to bottom. Red indicates higher vorticity magnitude.

Re=140,000 Simulation

The volume grid used for the simulation at \(Re=140,000\) consists of 1,434,605 tetrahedral cells. The spacing used for tetrahedral cells was taken from Grid B based on its success for the low Reynolds number case. The prism layer used smaller grid spacing normal to the walls in the boundary layer to account for the higher Reynolds number. The average normal distance to the first cell was 0.02 in viscous wall units. The extents of the computational domain are the same used for the \(Re=3900\) cases, including the span of four diameters. The cylinder surface mesh is defined by 110 nodes in the azimuthal direction and 39 nodes in the spanwise direction. Time averaging is done over approximately 100 cycles of shedding. The Mach number is 0.1. Full turbulence in the attached boundary layer is assumed, avoiding the issue of transition. This assumption does have significant impacts. The cylinder at \(Re=140,000\) is in the high range of subcritical flow, on the verge of experiencing a significant drop in drag as the attached boundary layer transitions to turbulent flow with increasing Reynolds number. By assuming a turbulent separation, the flowfield takes on the characteristics of supercritical flow in the range of \(Re>3.5 \times 10^6\). The present computational results are, therefore, compared to experiments of similar flow regimes as opposed to identical Reynolds number. This strategy was chosen so that direct comparison could be made to a high order, well validated structured code. Although Travin et al.\(^23\) performed computations at a higher Reynolds number, the number of time samples used was relatively small, preventing their use in this study.

Table 2 compares the Cobalt results using the S-A DES turbulence model with the DES study by Travin et al.\(^23\) and the experiment of Roshko\(^21\). Travin used a cylinder of two diameters in span with a structured grid of 118x105x30 (radial, azimuthal, spanwise) or a total of 371,700 nodes. The grid of Travin et al.\(^23\) provides 15 nodes per diameter of span compared to approximately 10 nodes per diameter of span for the present study. It should be kept in mind that the number of cells is higher than the number of nodes for a prism or tetrahedral grid. Case TS1 also employed the S-A DES formulation used here with a higher-order, structured algorithm. The experimental data by Roshko\(^19\) is from \(3.5 \times 10^6 < Re < 8.4 \times 10^6\).

![Grid C](image1.png)

![Grid B](image2.png)

![Grid A](image3.png)

<table>
<thead>
<tr>
<th></th>
<th>(C_D)</th>
<th>(C_{pb})</th>
<th>(St)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobalt S-A DES</td>
<td>0.59</td>
<td>-0.72</td>
<td>0.29</td>
</tr>
<tr>
<td>Travin et al. (TS1)</td>
<td>0.57</td>
<td>-0.65</td>
<td>0.30</td>
</tr>
<tr>
<td>Experiment</td>
<td>0.62-0.74</td>
<td>-0.85</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Table 2. Re=140,000 Time-Averaged Results

Figure 14 illustrates the lift and drag forces as a function of non-dimensional time. The computed time-averaged coefficient of drag of 0.59 differs from case TS1 by 3.5% and from the lower range of the experimental values by 4.8%. The Strouhal number for the computational result of 0.29 lies between the experimental value and the value computed by Travin et al.\(^23\). The Cobalt result provides a back pressure slightly closer to experiment that case TS1.
Figure 14. Time Dependent Forces for Re=140,000

Figure 15. Coefficient of Pressure on the Cylinder Surface for Re=140,000.

Figure 15 compares the coefficient of pressure (C_p) computed on the cylinder surface in the current study with other computational and experimental results. The angle θ is measured from the leading edge stagnation point. The Roshko21 experimental C_p is for $Re=8.4\times10^6$. The experimental data of van Nunen22 was taken at $Re=7.6\times10^6$. Both experiments are well into the post-critical regime. The present simulation, as well as those by Travin et al.23, fall within the spread of the experimental results. The Cobalt results produce a suction peak that is 10% lower than case TS1. Overall, the favorable comparisons with experiment and the close match to drag and back pressure compared to Travin et al.23 lead to a strong confidence in the use of the S-A DES model with unstructured grids. The small differences in the simulations may be related to the different spans used, the use of a compressible code vs. an incompressible code, or different numerical accuracy based on the grids and numerical algorithms used.

Conclusions

Unstructured grids have been used to obtain LES and DES predictions of the subcritical and supercritical flow regimes about a circular cylinder. At the subcritical Reynolds number of 3900, particular attention was paid to providing evidence of grid independence. Grid independence was achieved in some of the variables examined. Time-averaged drag changed by less than 1% from the medium grid to the finest grid, providing drag values well within the range of experimental values. Changes in the recirculation zone length and the base pressure from the medium grid to the finest grid were less convincing, as the recirculation zone length extended 20% and the base pressure magnitude increased 10%. It should be kept in mind that grid convergence for all turbulent quantities is not guaranteed for an LES method until the DNS limit is reached. Also, there is no guarantee that the solution will move towards grid convergence in a linear manner since the increased grid resolution may resolve new flow features not present on the coarser grid.

Despite the lack of total success in achieving grid independence for all variables or flow features, final values for drag, recirculation zone length, and Strouhal number fall within the range of experimental uncertainty for the two finest grids. Using the inherent dissipation of the code to perform LES in MILES fashion has produced results as good as other computational studies using either constant coefficient Smagorinsky SGS models or more advanced dynamic SGS models. The middle grid for the current study was of similar resolution to other grids used by structured solvers, showing that turbulence resolving calculations are possible with unstructured solvers without using a cost-prohibitive number of cells.

The supercritical case tested at $Re=140,000$ using DES compares well with experimental results and the work of Travin et al.23 that was performed on structured grids. The issue of transition was not the focus of this study, and was avoided by assuming a fully turbulent boundary layer. This created the conditions for flow in the supercritical regime, despite the flow Reynolds number which is normally associated with subcritical flow. While the higher Reynolds numbers associated with supercritical flow are of greater interest, future testing should include laminar separation cases for $Re=140,000$ as is done by Travin. This would allow comparison with experimental data of the same
Reynolds number while matching the flow regimes.

Overall, this study should add to the confidence level in using the combination of unstructured grids/algorithms and DES to calculate massively separated, unsteady, turbulent flows. The sub-critical calculations can be used to form a baseline for future improvements in the solver (lower dissipation and/or higher order accuracy).

References

