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Prediction of the time-dependent flow around a 6 : 1 prolate spheroid undergoing a
pitchup maneuver were obtained using Detached-Eddy Simulation (DES). The spheroid
pitches about its centroid from 0◦ to 30◦ angle of attack at a dimensionless rate of 0.047
(based on the freestream speed and model length). Flowfield predictions are evaluated
using experimental measurements and also contrasted against predictions of the flows at
static angles of attack (α) of 10, 20, and 30◦. Flowfield parameters are the same as in the
experiments, the Reynolds number based on freestream velocity and the model length is
4.2 × 106, the boundary layers on the spheroid surface are tripped at x/L = 0.2. Solutions
of the compressible Navier-Stokes equations are obtained on unstructured grids, rigid-
body motion of the spheroid is accomplished using an Arbitrary Lagrangian Eulerian
formulation. Compared to solutions at fixed angle of attack, the flow structure for the
pitchup case lags that of the static-α flows. Surface flows for the static- and maneuvering-
geometry solutions show marked differences at the conclusion of the pitchup. At 20◦ angle
of attack the pitchup solution does not possess a secondary separation as in the static-α
case. Skin friction predictions exhibit similar variation as the experimental measurements
of Wetzel and Simpson [1], though are shifted below the measured values. Predictions
of the azimuthal pressure distribution exhibits good agreement with the measurements
of Hoang et al. [2]. Development of the normal force and pitching moment for the ma-
neuvering geometry also show reasonable agreement with measured values.

Introduction

EXTENDING the dynamic performance of aero-
and hydro-dynamic vehicles beyond conventional

regimes constitutes an area of significant scientific in-
terest and technological importance. Accurate predic-
tive methodologies offer a powerful tool for analysis
and improving design, though the flows around bodies
experiencing motion are complex and challenge all as-
pects of numerical simulation approaches. Most of the
flows of practical interest occurring at high Reynolds
number, are often unsteady, and may experience re-
gions of flow separation. This contribution is relevant
to the subset of vehicles experiencing a prescribed mo-
tion and for which the objective is prediction of the
resulting external flow. In other instances, variations
in the external flow can induce motion of a vehicle, a
related area of interest (e.g., see Forsythe et al. [3]).

The present work focuses on the flow around a pro-
late spheroid at angle of attack. Unlike in axisym-
metric flows in which flow features are often similar to
those in two-dimensional configurations, the flow over
a spheroid at incidence poses additional complexities.
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Along the axial direction, a favorable pressure gradient
exists on the windward side, with an adverse pres-
sure gradient along the leeward side of the spheroid.
In the circumferential direction, the pressure gradient
from the windward to leeward side is favorable over
the front half of the body, becoming adverse over the
rear half. Several measurements and simulations of
the flow over prolate spheroids have documented sur-
face properties, e.g., pressure and skin friction, mean
flow and turbulence profiles, and development of the
vortical structures that characterizes the separated re-
gion at various angles of attack (Ref. [4], [5], [6], [7], [8]
and references therein).

For the static-geometry spheroid, an array of sim-
ulation techniques have been employed ranging from
steady Reynolds-averaged Navier-Stokes (RANS), un-
steady RANS (URANS), Large Eddy Simulation
(LES), and Detached Eddy Simulation (DES) [9], [10],
[11], [12]. In general, previous numerical investiga-
tions of static-geometry spheroids have yielded many
of the same effects observed in experiments, e.g., fairly
accurate predictions of the location of primary and
secondary separation for the spheroid at 20◦ angle of
attack [12].

The flowfield around maneuvering bodies has been
less researched, both experimentally and numerically.
Based on experimental measurements of a 6:1 prolate
spheroid undergoing a pitchup-maneuver, Hoang et
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al. [2] concluded that the flow was highly unsteady
and would be difficult to model as steady or even
quasi-steady. Wetzel and Simpson [1] also measured
the flowfield around a spheroid undergoing transient
maneuvers, showing that at higher angles of attack,
development of the flow structure lags that character-
izing the flow around static geometries at the same
angle of attack. The location of primary separation,
for example, was delayed at most positions along the
spheroid by as much as 10◦ compared with the mea-
surements of the flow at static angles of attack.

Rhee and Hino [13] recently reported computations
of the time-dependent flow around a spheroid under-
going a pitchup maneuver, modeling the configuration
measured by Hoang et al. [2] and Wetzel and Simpson
[1]. In their work, flowfield predictions were obtained
via solution of the unsteady RANS equations. A body
force term was added to the Navier-Stokes equations to
take into account the inertial motion of the coordinate
system. Comparisons with experimental data showed
similar features to those observed in experiments, e.g.,
primary separation further leeward compared to the
static-α configurations. Rhee and Hino [13] attributed
discrepancy between simulation and measurements to
modeling errors, pointing out that application of scalar
eddy viscosity was not sufficient for adequate resolu-
tion of the vortical flow on the leeward side of the
body.

For high Reynolds number prediction, RANS meth-
ods have traditionally been employed, one advan-
tage being the computationally efficiency of such ap-
proaches. For attached boundary layers and other thin
shear layers not far from their calibration range, RANS
models are often adequate. In separated flows, the per-
formance RANS models is often uneven. LES offers
a powerful approach for direct resolution of the un-
steady features characterizing separated regions. The
computational cost of the method, however, prohibits
its application to high Reynolds number flows [14].
These considerations provide the primary rationale for
the application and continued development of hybrid
techniques that combine RANS and LES.

The aim of the present contribution is prediction
of the flow around the prolate spheroid undergoing a
pitchup about its centroid. The computational ap-
proach is based on a RANS-LES hybrid: Detached-
Eddy Simulation (DES). DES was originally proposed
for application to massively separated flows and to
date has yielded predictions of an array of complex
flows with comparable or superior accuracy to URANS
and at Reynolds numbers for which LES is not feasi-
ble. Three-dimensional separated flows as occur over
a spheroid at incidence provide a challenging test case
since the wake region is not established via the break-
down of overwhelming new instabilities that result in
rapid development of chaotic structures in the wake.
Three-dimensional separations and similar flows (or re-

gions of a flow) constitute a “grey area” for hybrid
methods such as DES in which turbulent eddies may
not rapidly develop following boundary layer detach-
ment. The Reynolds-averaged treatment suppresses
substantial eddy content near solid surfaces and the
lack of structural features in the detaching boundary
layers may contribute to more substantial errors in
spheroid predictions as compared to other separated
flows, especially those experiencing massive separa-
tion. The present effort assists in evaluating the cur-
rent state of approaches for predicting the flow around
a maneuvering body and, in addition, aspects of the
numerical approach used to compute rigid-body mo-
tion. As described in greater detail below, the parame-
ter settings are the same as considered by Hoang et al.
[2], Wetzel and Simpson [1], and Rhee and Hino [13],
enabling an assessment of simulation results against
these previous works.

Approach
Detached-Eddy Simulation

Flowfield predictions are obtained for both static
and maneuvering configurations using Detached-Eddy
Simulation (DES). The DES formulation is based on
a modification to the Spalart-Allmaras [15] model (re-
ferred to as S-A throughout) such that it reduces to its
RANS formulation close to solid surfaces and becomes
a Large-Eddy Simulation in other regions provided the
grid density is sufficient[16]. The S-A RANS model[15]
is summarized below along with issues related to the
DES formulation. Additional discussion can be found
in Spalart[14] and Strelets[17].

In the S-A RANS model, a transport equation is
used to compute a working variable used to form the
turbulent eddy viscosity,

Dν̃

Dt
= cb1[1 − ft2]S̃ ν̃ −

[
cw1fw − cb1

κ2
ft2

] [
ν̃

d

]2

+
1
σ

[
∇· ((ν + ν̃)∇ν̃) + cb2 (∇ν̃)2

]
+ ft1 ∆U2 , (1)

where ν̃ is the working variable. The eddy viscosity νt

is obtained from,

νt = ν̃ fv1, fv1 =
χ3

χ3 + c3
v1

, χ ≡ ν̃

ν
, (2)

where ν is the molecular viscosity. The production
term is expressed as,

S̃ ≡ fv3S +
ν̃

κ2d2
fv2 , fv2 =

(
1 +

χ

cv2

)−3

, (3)

where S is the magnitude of the vorticity. The function
fw is given by,

fw = g

[
1 + c6

w3

g6 + c6
w3

]
,
1/6

(4)
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g = r + cw2 (r6 − r), r ≡ ν̃

S̃κ2d2
. (5)

The function ft2 is defined as,

ft2 = ct3exp(−ct4χ
2) . (6)

The trip function ft1 is specified in terms of the dis-
tance dt from the field point to the trip, the wall
vorticity ωt at the trip, and ∆U which is the differ-
ence between the velocity at the field point and that
at the trip,

ft1 = ct1gtexp
(
−ct2

ω2
t

∆U2

[
d2 + g2

t d2
t

])
, (7)

where gt = min(0.1, ∆U/ωt∆x) and ∆x is the grid
spacing along the wall at the trip. The solid wall
boundary condition is ν̃ = 0 and the constants are
cb1 = 0.1355, σ = 2/3, cb2 = 0.622, κ = 0.41,
cw1 = cb1/κ2 + (1 + cb2)/σ, cw2 = 0.3, cw3 = 2,
cv1 = 7.1, cv2 = 5, ct1 = 1, ct2 = 2, ct3 = 1.1, and
ct4 = 2.

The DES formulation is obtained by replacing in the
S-A model the distance to the nearest wall, d, by d̃,
where d̃ is defined as,

d̃ ≡ min(d, CDES∆) , (8)

where ∆ is the largest distance between the cell cen-
ter under consideration and the cell center of the
neighbors (i.e., those cells sharing a face with the cell
in question). In “natural” applications of DES, the
wall-parallel grid spacings (e.g., streamwise and span-
wise) are on the order of the boundary layer thickness
and the S-A RANS model is retained throughout the
boundary layer, i.e., d̃ = d. Empirical input is strong
in the sense that prediction of boundary layer separa-
tion is under control of the RANS model in natural
DES applications. Away from solid boundaries, the
closure is a one-equation model for the SGS eddy vis-
cosity. When the production and destruction terms of
the model are balanced, the length scale d̃ = CDES∆
in the LES region yields a Smagorinsky-like eddy vis-
cosity ν̃ ∝ S∆2. Analogous to classical LES, link-
ing the eddy viscosity to ∆ allows an energy cascade
down to the grid size. The additional model constant
CDES = 0.65 was set in homogeneous turbulence[18]
and used without modification in this work.

Simulation overview

The compressible Navier-Stokes equations are solved
on unstructured grids using Cobalt [19], a commer-
cial version of Cobalt60, the Navier-Stokes solver de-
veloped at the Air Force Research Laboratory. The
numerical method is a cell-centered finite volume ap-
proach applicable to arbitrary cell topologies (e.g,
hexahedrals, prisms, tetrahedrons). The spatial op-
erator uses the exact Riemann Solver of Gottlieb

and Groth[20], least squares gradient calculations us-
ing QR factorization to provide second order accu-
racy in space, and TVD flux limiters to limit ex-
tremes at cell faces. A point implicit method using
analytic first-order inviscid and viscous Jacobians is
used for advancement of the discretized system. For
time-accurate computations, a Newton sub-iteration
scheme is employed, the method is second order ac-
curate in time. The domain decomposition library
ParMETIS [21] is used for parallel implementation and
provides optimal load balancing with a minimal sur-
face interface between zones. Communication between
processors is achieved using Message Passing Interface.

A key feature in the commercial version of Cobalt is
the capability of computing the flow around geometries
undergoing rigid body motion. Simulation of rigid
body motion is achieved through an Arbitrary La-
grangian Eulerian (ALE) formulation, where the grid
is neither stationary nor follows the fluid motion. The
conservation equations are solved in an inertial refer-
ence frame with modifications to the spatial operator
in order that the advection terms are relative to the
(non-inertial) grid reference frame. This requires sim-
ple modifications to many boundary conditions and to
the initial conditions for the Riemann problem. The
ALE formulation also requires modifications to the
time-centered implicit temporal operator. A number
of Newton sub-iterations are used to reduce errors as-
sociated with integrating over the time-step with an
implicit temporal operator.

The maneuver is a pitchup of the spheroid about
its centroid from 0◦ to 30◦ angle of attack at a rate
of 90◦ per second, corresponding to a dimensionless
pitch rate of 0.047 based on the spheroid length and
freestream speed [1]. The Reynolds number based on
freestream velocity and the model length is 4.2 × 106,
well above the established critical Reynolds number of
2.5 × 106 [5]. As in the experiments, the boundary
layer is tripped at x/L = 0.2.

Unstructured grids were created using VGRIDns de-
veloped at the NASA-Langley Research Center [22].
The mesh for the predictions presented in this
manuscript was comprised of slightly over 5.2 × 106

cells, the grid comprised of prisms in the boundary
layer and tetrahedra in other regions (see Figure 1).
The distance from the spheroid surface to first cell
center was within one viscous unit, geometric stretch-
ing at a rate 1.2 was used away from the wall. The
timestep, made dimensionless using the minor axis of
the spheroid and freestream velocity, was equal to 0.01.
In the calculations, the inflow eddy viscosity was set
to zero, with the trip terms active on the surface of
the spheroid at x/L = 0.2. Far-field boundary values
are obtained from modified Riemann invariants, no-
slip conditions are imposed on the spheroid surface.
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Fig. 1 6:1 prolate spheroid, side and end views of
the unstructured grid.

Results
Flow visualizations

Figure 2 and Figure 3 show surface flows for the
static and pitching geometries at 20◦ and 30◦ angle
of attack, respectively. For the spheroid at incidence,
surface streamlines diverge from the windward plane of
symmetry around the spheroid, separation is marked
by the convergence of the surface flows, reattachment
is identified by the divergence of the surface flows. In
the lee side, streamlines from the windward and lee-
ward sides converge to form the primary separation
line. For the static geometry at α = 20◦, the pri-
mary separation is initiated at an axial location around
x/L = 0.4. At 30◦ angle of attack, the primary separa-
tion is essentially initiated shortly after the boundary
layer trip at x/L = 0.2. Increase in α leads to more
substantial divergence of the flow from the windward

Fig. 2 Surface flows at 20◦ angle of attack. (a)
static, (b) pitchup.

Fig. 3 Surface flows at 30◦ angle of attack. (a)
static, (b) pitchup.

plane of symmetry and for the static-α cases at both
20◦ and 30◦, a reasonably well-developed secondary
separation and reattachment is apparent in Figure 2a
and Figure 3a. Figure 2b, showing the surface flows
for the pitchup at α = 20◦, do indicate the presence of
a secondary separation.

In general, the surface flows in Figure 2b and Fig-
ure 3b show that angle of attack is effectively lowered
by the pitchup compared to the static geometries. As
discussed by Wetzel and Simpson [1], for the pitchup
case fluid particles experience a less severe adverse
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Fig. 4 Contours of the velocity magnitude in the
flow undergoing the pitchup maneuver, x/L = 0.772,
α = 20◦. Flow separation occurs at approximately
φ = 115◦.

pressure gradient with the boundary layer separation
occurring further leeward compared to the static-α
cases. For the present calculation, the azimuthal lo-
cation of the primary separation is further leeward by
approximately five degrees, less than the azimuthal
change noted by Wetzel and Simpson [1] that was
closer to 10◦.

An aspect of the structure of the separated re-
gion noted in static-α configurations is a low-velocity
trough of fluid immediately leeward of separation for
all angles of attack [11] [23]. This effect is shown
in figure 4 for the pitchup case at α = 20◦ and
x/L = 0.772. As discussed by Hedin et al. [11], this
low-velocity trough is caused by a sweeping up of the
low-momentum fluid near the wall by the primary
vortices and subsequent accumulation of this fluid be-
tween the primary vortex and the body surface. The
vorticity contours in Figure 5 show the development
of the structures from the primary separation along
the lee side for the static-α and pitchup cases at 20◦

angle of attack. The skin friction contours on the
spheroid surface show the influence of the boundary
layer trip at x/L = 0.2. The primary vortex is rela-
tively flat/elliptic and located close to the hull in the
first cross-section. With downstream development, the
vortex grows in size becoming more circular and in
the aft cross-sections the vortex detaches completely
from the body surface. A thick longitudinal band of
Cf minima extends from x/L = 0.2 to the rear of the
spheroid. The windward edge of this band corresponds
to the primary separation lines in both the static and
pitching geometries while the leeward edge to the sec-

Fig. 5 Contours of vorticity magnitude at six axial
stations, skin friction shown on spheroid surface,
20◦ angle of attack. (a) static, (b) pitchup.
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Fig. 6 Mean velocity profiles for the static and
maneuvering geometries at 20◦ angle of attack,
streamwise location x/L = 0.772, azimuthal angle
of φ = 90◦. Static geometry, DES: us/U∞;

vs/U∞; ws/U∞. Maneuvering geometry,
DES: us/U∞; vs/U∞; ws/U∞.
Static geometry, measurements: ◦ us/U∞; � vs/U∞;

ws/U∞.

ondary separation line in the static flow

Mean velocity profiles

Velocity profiles are shown in a reference frame at-
tached to the spheroid and aligned with the local coor-
dinates (body axis). The us component is tangent to
the spheroid surface and aligned with the major axis.
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Fig. 7 Mean velocity profiles for the static and
maneuvering geometries at 20◦ angle of attack,
streamwise location x/L = 0.772, azimuthal angle
of φ = 120◦. Legend same as Figure 6.
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Fig. 8 Mean velocity profiles for the static and
maneuvering geometries at 20◦ angle of attack,
streamwise location x/L = 0.772, azimuthal angle
of φ = 150◦. Legend same as Figure 6.

The vs velocity component is normal to the surface,
the ws velocity is tangent to the spheroid and com-
pletes the right-handed coordinate system. The pro-
files shown below have been made dimensionless using
the major-axis length L of the spheroid and freestream
velocity U∞. Three sets of profiles are shown in the
figures: static-α measurements from Chesnakas and
Simpson [7], DES predictions of the static-α flow, and
profiles from the pitchup case (plotted in the pitching
reference frame). The profiles are shown for angle of
attack α = 20◦ and at axial location x/L = 0.772.
Profiles at four azimuthal angles, from φ = 90◦ to
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Fig. 9 Mean velocity profiles for the static and
maneuvering geometries at 20◦ angle of attack,
streamwise location x/L = 0.772, azimuthal angle
of φ = 180◦. Legend same as Figure 6.

φ = 180◦ (φ = 0 corresponds to the windward symme-
try plane)

In Figure 6 the velocity profiles for the static geom-
etry agree well with the measurements of Chesnakas
and Simpson [7], the DES prediction accurately cap-
turing the turning of the boundary layer at this loca-
tion. Note that for the body-surface coordinate system
the ws profiles are negative, corresponding to the mo-
tion in the x = cnst plane at φ = 90◦ being from
the windward to the leeward side of the spheroid. The
peak in ws/U∞ and its location at ys/L = 3×10−3 are
accurately predicted. The us predictions are slightly
larger than measured, though the agreement is ade-
quate, both the predicted and measured profiles show-
ing a logarithmic region. For the flow undergoing the
pitchup maneuver the wall-normal gradient in us is
slightly sharper and larger than the corresponding pre-
diction and measurement of the static geometry us

profile.
Shown in Figure 7 are the velocity profiles for the

same conditions – α = 20◦, x/L = 0.772 – at an
azimuthal position further leeward at φ = 120◦. Pre-
dictions of all three of the static-geometry velocity
components agree very well with the measurements
of Chesnakas and Simpson [7]. This azimuthal position
is slightly leeward of the location of boundary layer de-
tachment, the relatively sharp increase in the us and
ws profiles correspond to the trough of low-momentum
fluid that accumulates between the primary vortex and
body surface. The accurate prediction of the profiles
at this location provide evidence that the prediction of
boundary layer separation is relatively accurate. The
ws profile close to the wall is slightly positive, indica-
tive of the influence of the primary vortex turning the
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flow such that the ws component, which lies in the
x = cnst plane is beginning to sweep the near-wall
fluid from windward side to leeward side.

At φ = 150◦, for which the velocity profiles are
shown in Figure 8, the streamwise velocity us predic-
tion for the static geometry again agrees well with the
measurements of Chesnakas and Simpson [7]. Com-
pared to the profiles in Figure 7, the circumferential
component ws is more significant, reflective of the
effect of the vortical structures developing from the
primary separation (c.f., Figures 5). The figure shows
that the ws prediction for the static geometry is be-
low the measurement in the region where the profile
acquires its maximum and that the wall-normal ve-
locities are also below the measured values. For the
pitchup, the streamwise component shown is lower
than in the static-geometry case.

Figure 9 shows the velocity profiles at φ = 180◦, the
leeward symmetry plane. As observed at the other
azimuthal positions, the DES prediction of the us

component for the static geometry agrees well with
the measurements of Chesnakas and Simpson [7], the
wall-normal velocity in the DES result being slightly
larger than the measured values. For the pitchup, the
streamwise velocity is lower than the static-geometry
predictions and measurements. The wall-normal ve-
locity in the pitchup is substantially larger than in
the static-geometry DES and measurements, the pro-
file indicating a flow towards the wall in the spheroid
reference frame.

Skin-friction, pressure, forces and moments

Azimuthal distributions of the magnitude of the skin
friction coefficient are shown in Figure 10 for α = 20◦

and Figure 11 for α = 30◦. For both angles of at-
tack, the distributions in the aft region are shown, for
x/L = 0.729 and x/L = 0.882. DES predictions are
contrasted against the URANS results from Rhee and
Hino [13] and the experimental measurements of Wet-
zel and Simpson [1]. For α = 20◦ (Figure 10), the
DES predictions and URANS results of Rhee and
Hino [13] yield similar distributions, the minima in
the vicinity of φ = 125◦ correlating with the primary
separation [23]. In general, for both axial stations at
α = 20◦ the experimental measurements are above the
two sets of simulation results. Unfortunately, the ex-
perimental values near the attachment line at φ = 0
are extraordinarily high and cannot be justified by a
turbulent boundary layer (since such boundary layers
never sustain skin-friction coefficients based on edge
velocity over 6×10−3, and the edge velocity is close to
the freestream velocity), nor by a laminar boundary
layer at the present Reynolds numbers. The qual-
itative behavior near the attachment line is also in
strong contrast to CFD, precisely on the windward
side where CFD is most reliable. If we imagine that
CFD missed a relaminarization of the attachment-line
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Fig. 10 Azimuthal distribution of skin friction
coefficient from the pitchup maneuver, α = 20◦,
streamwise locations x/L = 0.729, 0.882. DES;

Rhee and Hino [13]; ◦ Wetzel and Simpson
[1].

flow, this would result in the CFD skin friction being
too high in that region, rather than too low. An inde-
pendent measurement, for instance with a hot film or
oil technique, would assist in clarifying issues related
to the measurements.

At x/L = 0.882, minima in the DES predictions
for α = 20◦, correlate with boundary layer separa-
tion. As indicated by Figure 2, secondary separation
is difficult to distinguish for the pitchup case, in turn
consistent with the effectively lower angle of attack
induced by the maneuver. For α = 30◦, somewhat
analogous features are observed, with the experimen-
tal measurements consistently above the simulation
results. Compared to the distributions for α = 20◦,
the Cf minimum, correlated with the primary separa-
tion, occurs at lower azimuthal angles, corresponding

7 of 11

American Institute of Aeronautics and Astronautics Paper 2003–0269



φ

10
00

C
f

0 30 60 90 120 150 180
0

2

4

6

8

10

12
α = 30o

x/L = 0.729

φ

10
00

C
f

0 30 60 90 120 150 180
0

2

4

6

8

10

12
α = 30o

x/L = 0.882

Fig. 11 Azimuthal distribution of skin friction
coefficient from the pitchup maneuver, α = 30◦,
streamwise locations x/L = 0.729, 0.882. DES;

Rhee and Hino [13]; ◦ Wetzel and Simpson
[1].

to the location of the primary separation occurring at
a more windward location with increasing α. At the
higher angle of attack, the second minima in Cf are
more clearly defined.

Azimuthal variations in the pressure coefficient are
shown in Figures 12-14 for α = 10−30◦. For each angle
of attack, Cp distributions are shown at axial locations
x/L = 0.44 and x/L = 0.77. DES predictions are plot-
ted, along with the URANS results of Rhee and Hino
[13] and experimental measurements of Hoang et al.
[2]. For α = 10◦, the agreement between the DES pre-
dictions and experimental measurements is reasonable,
with the DES accurately capturing the peak-to-peak
variation. The URANS prediction of Rhee and Hino
[13] is also shown in Figure 12 and the figure shows less
satisfactory agreement with the measured distribution
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Fig. 12 Azimuthal distribution of pressure coeffi-
cient from the maneuvering flow, α = 10◦, stream-
wise locations x/L = 0.440, 0.770. DES;

Rhee and Hino [13]; ◦ Hoang et al. [2].

or DES result. At α = 20◦ in Figure 13 there is good
agreement between the DES prediction at x/L = 0.44
and experimental measurement. The URANS result
from Rhee and Hino [13] shows fair agreement with
the measured distribution. At x/L = 0.77 in Fig-
ure 13, the second minima in Cp near φ = 165◦

is not predicted as accurately in the DES, though
as also observed at x/L = 0.44, the DES predic-
tion is closer to the measured distribution than the
URANS. At α = 30◦ and x/L = 0.44, the Cp distribu-
tion in Figure 14 shows in the measured distribution
from Hoang et al. [2] a second minima around φ = 165◦

that is not accurately predicted in the present DES
or the URANS. At x/L = 0.77, the measured Cp for
φ > 110◦ is relatively flat, characteristic of flow de-
tachment from the spheroid. Both the present DES
and URANS of Rhee and Hino [13] produce similar
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Fig. 13 Azimuthal distribution of pressure co-
efficient from the maneuvering flow at α = 20◦,
streamwise locations x/L = 0.440, 0.770. DES;

Rhee and Hino [13]; ◦ Hoang et al. [2].

distributions as shown in the figure.
Figure 15 and Figure 16 shows the variation of the

normal force coefficient Cz and pitching moment coeffi-
cient Cm with angle of attack, respectively. In general,
the numerical results capture reasonably well the evo-
lution with α in Cz and Cm. The URANS predictions
of Rhee and Hino [13] are adequate, though the normal
force prediction is below the data.

Summary
Flowfield predictions around a 6 : 1 prolate spheroid

undergoing a pitchup maneuver were obtained using
Detached-Eddy Simulation. Similar to the measure-
ments of Wetzel and Simpson [1], the pitchup results in
a lag in the development of the flow structure with the
primary separation occurring further leeward, though
the leeward shift in the primary separation was smaller
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Fig. 14 Azimuthal distribution of pressure co-
efficient from the maneuvering flow at α = 30◦,
streamwise locations x/L = 0.440, 0.770. DES;

Rhee and Hino [13]; ◦ Hoang et al. [2].

than measured. Comparison of the mean velocities in
a body-surface coordinate system with experimental
measurements of the static-α solutions shows that the
development of the mean flow is accurately predicted.

Predictions of the azimuthal distribution of the skin
friction exhibited similar variation as the measured
values, though with a somewhat consistent shift below
measurements. Measured Cf values are high, espe-
cially on the windward side. DES predictions of the
skin friction distribution are similar to the URANS
results of Rhee and Hino [13]. Development of the
pressure field was accurately predicted, in better agree-
ment with measurements than in Rhee and Hino [13].
The finer mesh resolutions compared to those used
by Rhee and Hino [13] provide part of the explana-
tion for the improved agreement with measurements.
Additionally, the application of DES enables a more
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Fig. 16 Pitching moment development against an-
gle of attack. DES; Wetzel and Simpson
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coherent structure to be resolved in the wake, in the
present case this effect is related to the reduction of the
eddy viscosity in the lee side. The effect of mesh re-
finement remains to be ascertained in order to further
assess the role of the model as well as other aspects of
the computations.
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